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Denotational Semantics

▸ Origins of Domain Theory lie in 1970s, work by Dana Scott
and Christopher Strachey

▸ Denotational semantics: assigning ”meaning” to a given
program/expression or a datatype in a programming language.

▸ More formally: given a programming language P, for each
datatype D (eg. expressions, commands, integers, etc.) in
that language, there is a valuation function v that maps a
phrase of syntax in that category to a denotation in a
semantic structure D - the domain of interpretation.
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Denotational semantics

Example

▸ Consider the following program:

def g(x){return x + 4 ?= 8}
▸ g(x) ∈ {0,1}, so regardless of input, we can come up with a

denotation for g .
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Denotational Semantics for datatypes themselves
Syntax of (some) datatypes

Command ::= if Bool then Command else Command
| while Bool do Command | def x := Value | run x
| Command ; Command | skip

Bool ::= tt | ff | x | Bool and Bool | Bool or Bool | ...

Int ::= 0 | 1 | ... | x | - Int | Int + Int | ...

Value ::= Bool | Int | Command

Semantics of (some) datatypes
JCommandK = State → State
State = Vars → JValueK
JBoolK = B
JIntK = Z
JValueK = JBoolK⋃JIntK⋃JCommandK

[Plotkin, 1983, p. 1-2]
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Issues with denotational semantics: infinitely looping
functions

▸ What happens if we try to associate a function/value with the
following program?

▸ f ∶ N→ N, f (x) = f (x) + 1

▸ def f ( x ) {
r e t u r n f ( x ) + 1

}

▸ It will loop and not map to a single number:

f (m) = f (m) + 1
f (m) = f (m) + 1 + 1
f (m) = f (m) + 1 + 1 + 1
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Issues with denotational semantics: recursively generated
semantic spaces

▸ A similar problem arises when we try to come up with
semantics for recursively generated structures. For example,
as the valuation for the datatype value is defined as follows:
JValueK = JBoolK⋃JIntK⋃JCommandK
where
JCommandK = State → State
State = Vars → JValueK
JBoolK = B
JIntK = Z

▸ Since one of the terms in finding the meaning of the datatype
Value requires us to find the meaning of Value again, the
same procedure is repeated indefinitely, not settling upon a
single interpretation.

▸ Moreover, if: ∣state ∣ = n then ∣state → state ∣ = nn.
[Vickers, 1989, p. 134]
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Criteria for a solution: fixpoints

▸ Observation: every recursively defined function can be
expressed as a non-recursive function.

▸ Take f ∶ N→ N, f (x) = f (x) + 1 as seen in the previous slides.
We can define a non-recursive higher-order function Φ, where
Φ(f ) = z ↦ f (z) + 1. We can then rewrite f as f = Φ(f ).

▸ If we let Φ ∶ A→ A, then x ∈ A is called a fixed point of Φ if
Φ(x) = x . [Plotkin, 1983, p. 4]

▸ Idea: element in semantic space that a given recursive
function is mapped to could be the fixed point of the
non-recursive function Φ that we rewrite f in terms of.

▸ However, a function might have no fixpoints, or rather several
- so how do we define a denotational semantics that captures
these cases?
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Fixpoints for recursively generated semantic spaces

▸ Recall: finding JValueK ∶= JBoolK⋃JIntK⋃JCommandK
involves finding JCommandK. But
JCommandK = state → state, where

state = var → JValueK (1)

▸ We can rewrite (1) as:
state = var → JBoolK⋃JIntK⋃ state → state

▸ Problem simplifies to:

state ≅ state → state (2)
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Fixpoints for recursively generated semantic spaces

▸ We showed that we arrive at the above difficulty by trying to
evaluate the meaning of Value. However, one encounters
similar difficulties with semantics of other datatypes, having
to deal with equations similar to (2), only with mathematical
constructions other than ”state”.

▸ Ultimately, we seek to solve:

D ≅ D → D
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Evolution of the datatype

datatype ? ?

Non-trivial
solution to

D ≅ [D → D]
?
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Proposed solution: partial functions

▸ Problem: we cannot use total functions to map between
datatypes because there are functions with no fixpoints.

▸ Solution: use partial functions. We can take progressively
better finite approximations of our infinitely recurring
function, and take the limit of these.

Example

See blackboard.
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The structure of datatypes: DCPO’s

The datatype requirements presented in the following slides closely
follow Scott’s original paper [Scott, 1970] as well as George
Hutton’s notes [Hutton, 1994]

1. A datatype is partially ordered.
▸ Want to represent that one datatype might contain the same

information as another. f ⊑ g captures the intuition that g is a
consistent extension of f .

▸ Set theoretically, f ⊑ g ⇐⇒ f ⊆ g . So g can compute what f
can, and more: e.g. f = {(0,1), (1,2)} and
g = {(0,1), (1,2), (2,3)}
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The structure of datatypes: DCPO’s
2. Datatypes are directed complete, with a bottom element.

▸ A subset X ⊆ D where any two points x , y ∈ X have an upper
bound z ∈ X .

[Hutton, 1994, Lec. 2]
▸ We want our datatypes to have consistent specifications of

information.
▸ For any directed subset, we want an element containing all its

information: a least upper bound.
▸ Thus, every directed subset of a datatype has a least upper

bound. Our datatypes are therefore directed complete
partial orders.

[Hutton, 1994, Lec. 2]
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Mappings on datatypes

3. Mappings between datatypes are monotonic.
▸ A function f ∶ D ′ → D should be sensitive to the accuracy of

the input.
▸ Consider ϕ(f ) versus ϕ(g) where f ∶= {(0,1), (1,1)} and

g ∶= {(0,1), (1,1), (2,2)}. Then ϕ(g) is defined whenever
ϕ(f ) is defined, but the converse is not true. So
f ⊑ g → ϕ(f ) ⊑ ϕ(g)
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Mappings on datatypes

4. Mappings between datatypes are continuous.
▸ We want functions to preserve limits: ”finite” information in

the output should entail ”finite” information in the input.
▸ LUB’s of directed sets should be preserved:

f ∶ D → D ′ is continuous iff f (⊔X ) = ⊔{f (x) ∶ x ∈ X}

[Hutton, 1994, Lec. 2]
▸ Continuity gives us the DCPO fixpoint theorem: Any

continuous function f ∶ A→ A on a DCPO A has a LFP
computed as the limit of � ⊑ f (�) ⊑ f 2(�) ⊑ ... , i.e.
LFP(f ) = ⊔{f n(�)∣n ∈N}

[Abramsky and Jung, 1994, p. 16]
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Summary

▸ We now have the desired structure for datatypes. DCPO’s
both capture our intuitions about how information should
behave, and also gives us a way of specifying the denotation
of recursive functions non-recursively.

▸ The presence of a bottom element lets us characterise
functions with no output

▸ Computable functions are monotonic and continuous.

▸ The DCPO fixpoint theorem tells us that there is always an
LFP: we have a denotation for any function.
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Evolution of the datatype

datatype DCPO ?

Non-trivial
solution to

D ≅ [D → D]
?
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Topological Intuitions

▸ Any computable function must be monotone and preserves
directed joins.

▸ Informally, directed joins = limits, so join-preservation =
continuity.

▸ Can we make this analogy formal?
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Alexandroff Topology

Reminder
Given partial order (P,≤), U is open in the Alexandroff topology
on P iff U is upwards closed (if x ∈ U and x ≤ y then y ∈ U).

▸ Alexandroff-continuity = monotone

▸ But what about join-preservation?
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Not all Alexandroff-continuous functions preserve d-joins

Consider the following monotone function from ω + 1 to ω + 2:

ω + 1

ω ω

⋮ ⋮

2 2

1 1

0 0
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Not all Alexandroff-continuous functions preserve d-joins

General Problem: Even if f (⊔A) ≠ ⊔ f [A], f can still be
continuous around f (⊔A) - for any open neighborhood U of
f (⊔A), the image of the open neighborhood V =↑ ⊔A lies in U.
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The Remedy

Want: For every open neighborhood V of ⊔A, f [V ] must contain

⊔ f [A]. Solution: Force every such V to contain an element of A.

Definition (Scott Topology)

Let D be a DCPO. We define the Scott topology σD on D by
defining the Scott-open sets as follows.

1. U ∈ σD iff (i) U is upwards closed and (ii) for any directed set
A, if ⊔A ∈ U then U ∩A is non-empty.

2. When U satisfies condition (ii) above, we say that U is
inaccessible by directed joins.

[Gierz et al., 2003, p. 134]

Proposition

S is Scott-closed iff S is downwards closed and closed under
directed joins.
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The Scott Topology

▸ Intuition: open set = finitely observable property. Hence, if
we can finitely observe a property of ⊔A then this property
should already be evident in some component a ∈ A of ⊔A.

▸ The following theorems formalise the idea that directed joins
= limits and preservation of directed joins = continuity.

Theorem

1. Let A be a directed set in DCPO D. Then in the Scott
topology σD , ⊔A is a limit of the filter generated by closing
{↑ a ∩A ∣ a ∈ A} upwards.

2. f ∶ D → E is continuous under the Scott topology iff it is
monotone and preserves directed joins.

Proof.
See blackboard. ◻
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Example of Scott Topology: N⇀ N

▸ The Scott topology on the DCPO of partial functions is
generated by subbasic opens of the form ↑ {(m,n)}.

▸ Closure under intersections give upsets of all finite partial
functions:

↑ {(m0,n0), . . . (mk ,nk)} =↑ {(m0),n0)} ∩ . . .∩ ↑ {(mk ,nk)}

▸ Closure under union generates all the Scott open sets, but
notice that we never end up generating upsets of infinite
partial functions - any Scott open set contains a finite partial
function.
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Up-sets are no longer open

▸ In general, ↑ x is not open in the Scott Topology.

▸ As a substitute, we can still take the interior int(↑ x).
▸ Intuition: y ∈ int(↑ x) means x is relatively small (often this

even means finite) compared to y - i.e. x is wayyy below y .

Definition
x is way below y (denoted x ≪ y) iff for any directed A, y ⊑ ⊔A
implies there is some a ∈ A s.t. x ⊑ a.

Proposition

y ∈ int(↑ x) implies x ≪ y . In particular, if ⊔A ∈ int(↑ x) then
there is some a ∈ A such that x ⊑ a.

Example

Consider the DCPO of partial functions on N. Then
{(0,0), (1,2)}≪ (x ↦ 2x) but (x even↦ 2x) /≪ (x ↦ 2x).
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Compact Elements

When x ≪ x , then x is a small approximation of itself, which is
possible only if x is small in some absolute sense.

Definition
If x ≪ x , we say that x is compact. If D is a DCPO, let
Dc = {x ∈ D ∣x ≪ x} be the set of its compact elements.

Example

▸ Any finitely defined partial function is compact.

▸ If D is a finite or flat DCPO, D = Dc .

▸ In ω + 1, only ω is not compact.

▸ More generally, in any ordinal DCPO α + 1, the compact
elements are the successor ordinals and 0.
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Algebraicity

▸ If we are to interpret a datatype as a DCPO, then every
element must be computable as a limit of finitely computable
elements.

▸ Compactness is an abstraction of being finitely computable.

Axiom (Algebraicity)

A datatype must have a ”basis” of compact elements: for each
x ∈ D, the set approx(x) =↓ x ∩Dc must be directed with
x = ⊔ approx(x).

Example

Many of the standard DCPOs such as the DCPO of partial
functions etc. are algebraic.
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Algebraic DCPOs are determined by their compact
elements

Proposition

1. Let D and E be algebraic DCPOs. Then f ∶ D → E is
continuous iff f (x) = ⊔ f [approx(x)].

2. Let D and E be DCPOs with D algebraic. Each monotone
function f ∶ Dc → E extends uniquely to a continuous
f ∶ D → E .
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Evolution of the datatype

datatype DCPO algebraic DCPO

Non-trivial
solution to

D ≅ [D → D]
?
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Semantics for function types is hard

▸ Clearly, having function types is useful as it provides semantics
for command

▸ This was a source of difficulty because the amount of all
possible functions (nn) is far more than the amount of states
we have (n)

36 / 55



Semantics for function types is hard

Now that we have some tools and definitions, we can attempt to
fully untangle this problem. What we want:
▸ ”Carve out” computable functions as these functions will be

executed on a physical machine
▸ We know that computable functions are monotone and

continuous

▸ We need the set of all functions (function space) between two
datatypes to also be a datatype
▸ Thus far, datatype = algebraic DCPO
▸ So, remains to show that for two algebraic DCPOs D,E , the

set of all monotone and continuous functions from D to E ,
[D → E ], is an algebraic DCPO.

Theorem (?)

Let D,E be algebraic DCPOs. Then, [D → E ] is an algebraic
DCPO.
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What DCPO structure should [D → E ] have?
▸ The set of all functions D → E is essentially the product

Πx∈DE of D copies of E , so we can equip it with the product
topology constructed from the Scott topology of each E .

▸ We consider the monotone and continuous subspace of
Πx∈DE , denoted ∫x∈D E .

Definition
The topological space ∫x∈D E of pointwise convergence on
[D → E ] is the topology generated by the basis

{∫
x∈D

Ux ∣ ∀x ∈ D.Ux ∈ σE}

with the condition that only finitely many Ud ≠ E in each (Ux)x∈D .

Proposition

Given a filter F in ∫x∈D E , F → f iff F (x)→ f (x) for each x ∈ D.
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What DCPO structure should [D → E ] have?

The order induced by the pointwise convergence topology on
[D → E ] yields the following DCPO:

Proposition

If D and E are DCPOs, then the partial order on [D → E ] defined
as

f ⊑ g ⇐⇒ ∀x ∈ D.f (x) ⊑ g(x)

is a DCPO, with (⊔F )(x) = ⊔F (x).
TO DO: Citation
Unfortunately, it’s NOT algebraic.
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[D → E ] is not necessarily algebraic
▸ A monotone continuous function f ∶ D → E is constructed as

the limit of compact approximations of the form

⟨d ; e⟩(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

e if x ⊑ d
⊥ otherwise

▸ However, the set of compact approximations approx(f ) is not
necessarily directed: consider how one constructs a compact
upper bound of ⟨d1; e1⟩ and ⟨d2; e2⟩.

[Abramsky and Jung, 1994, p. 54-55]
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[D → E ] is not necessarily algebraic

▸ The issue is that we cannot find what the upper bound of
⟨d1; e1⟩ and ⟨d2; e2⟩ should map to when given an element of
A =↑ d1∩ ↑ d2, although ideally it would be e1 ⊔ e2.

▸ e1 and e2 are arbitrary elements, other than the fact that they
are upper bounded by f (a) where a is some element of A.
Hence, to fix this, we require the existence of certain
additional least upper bounds.

[Abramsky and Jung, 1994, p. 54-55]
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Scott Domains

Definition
A partial order is consistently complete iff every set with an
upper bound has a least upper bound (join).

Axiom (Consistently Complete)

A datatype has to be consistently complete.

This concludes our search for a suitable class of structures to
represent domains of interpretation, for we are now in the position
to solve the D ≅ [D → D] equation.
Definition (Scott Domains)

A partial order is a (Scott) domain iff it is an algebraic, consistently
complete, directed complete partial order with a bottom element.

a c3po →
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Function space as a datatype revisited

Theorem
Let D,E be domains. Then the function space [D → E ] is a
domain.

Proof. By putting blind faith in us. (We don’t have time for the
details of the rest of the proof)
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Evolution of the datatype

datatype DCPO algebraic DCPO

Non-trivial
solution to

D ≅ [D → D]

consistently-complete
algebraic DCPO
(Scott Domains)
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Domain equations

The last thing remaining is to find a general datatype to serve as a
model for denotational computation. Essentially, we want our
datatype to be a solution to the equation:

D ≅ [D → D]

Note that the trivial solution is D = {�}, but, clearly, we want a
more interesting solution.
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Non-trivial solution: D∞
Let D be a domain. Set D0 = D and define inductively Dn for each
n by

Dn+1 ≅ [Dn → Dn]

”It turns out that there is a natural way of isomorphically
embedding each Dn successively into the next space Dn+1”

(One could make a whole presentation on this ”natural”
isomorphism; for a more in-depth proof check
[Stoltenberg-Hansen et al., 1994, Ch. 12.3] and [Gierz et al., 2003,
Ch. IV-7])

These embeddings allows us to take the limit of this equation,
obtaining the limit space

D∞ ≅ [D∞ → D∞]

[Scott, 1970]
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Non-trivial solution: D∞

The construction idea starts by taking the limit of a sequence of
domains obtained by iterating the function space construction.

That is, take f = (f0, f1, f2, . . .). We may apply this function
sequence onto itself getting (f1(f0), f2(f1), f3(f2), . . .).

[Stoltenberg-Hansen et al., 1994, p. 319]
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Non-trivial solution: D∞
This is a solution to the self-application problem because
▸ We have restricted the amount of functions considered to

allow for ∣D∞∣ = ∣[D∞ → D∞]∣

[Hutton, 1994, Lec. 5]
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Non-trivial solution: D∞

This is a solution to the self-application problem because

▸ We have restricted the amount of functions considered to
allow for ∣D∞∣ = ∣[D∞ → D∞]∣

▸ Each element of D∞ can be regarded as a continuous function
on D∞ into D∞, and every such continuous function can be
regarded as an element.
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Significance of D∞

Quote
”Finding a non-trivial model of the untyped λ-calculus was Scott’s
original motivation for developing domain theory. The construction
of such a model in 1972 is one of the most significant results in the
history of theoretical computer science.” [Hutton, 1994, Lec. 5]

Quote
”Technically speaking, what we have here is the first known,
’mathematically’ defined model of the so-called λ-calculus of
Curry-Church.” [Scott, 1970]
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Closing summary

▸ Domain theory is a field providing necessary tools for giving
denotational semantics to programming languages (or,
λ-calculus, generally)

▸ Partial orders with extra structure are chosen as the basic
elements to represent datatypes, coined Scott Domains

▸ This order induces a topology which can be used as a
supplement to order-theoretic treatment of the theory

▸ We illustrated a way to provide semantics to command by
defining D∞: a domain which is isomorphic to its function
space
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