Bachelor of Science Thesis Defence

Formal Verification of Deep Neural Networks for Sentiment Classification

Paulius Skaisgiris Supervisor: Dr. Pieter Collins

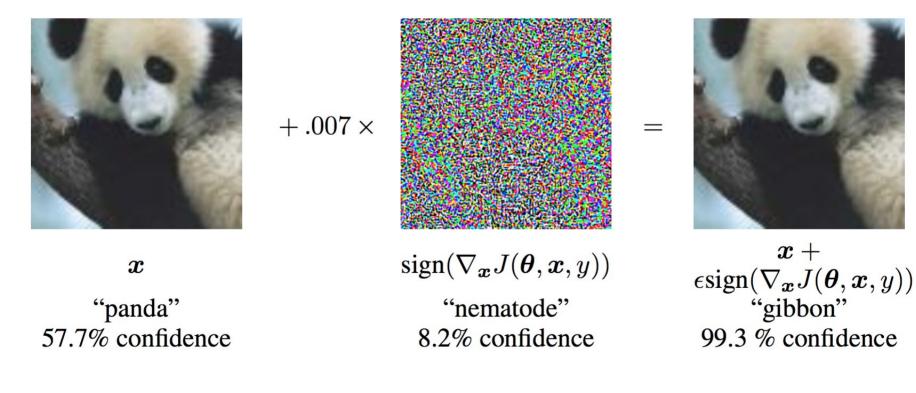
Department of Data Science and Knowledge Engineering

Maastricht University

What is the problem?

- Deep neural networks (DNNs) are a strong method of modelling data
- Reported to achieve superhuman performance across a wide variety of tasks

What is the problem?



[1] Szegedy et al. 2014 "Intriguing properties of Neural Networks"

What is the problem?

Prediction	SST word-level examples (by exhaustive verification, not by adversarial attack)
+	it's the kind of pigeonhole-resisting romp that hollywood too rarely provides .
-	it's the kind of pigeonhole-resisting romp that hollywood too rarely gives .
-	sets up a nice concept for its fiftysomething leading ladies , but fails loudly in execution .
+	sets up a nice concept for its fiftysomething leading ladies, but fails aloud in execution.
Prediction	SST character level examples (by exhaustive verification, not by adversarial attack)
-	you've seen them a million times.
+	you've sern them a million times.
+	choose your reaction : a.) that sure is funny !
-	choose tour reaction : a.) that sure is funny !

[2] Huang et al. 2019 "Achieving verified robustness to symbol substitution"

How can we solve this?

- Prove that the deep neural network is robust against adversarial examples using formal verification
- I aim to explore perturbations in the latent/encoding space

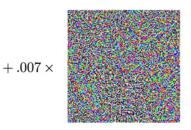
Background: Robustness

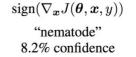
• For slight perturbations/alterations of the input *that are indistinguishable to a human*, will the model's output stay correct?

 \boldsymbol{x}

"panda"

57.7% confidence





 $\begin{array}{c} \pmb{x} + \\ \epsilon \mathrm{sign}(\nabla_{\pmb{x}} J(\pmb{\theta}, \pmb{x}, y)) \\ \text{``gibbon''} \\ 99.3 \ \% \ \mathrm{confidence} \end{array}$

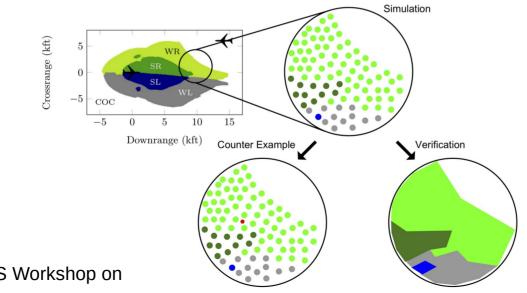
[1] Szegedy et al. 2014 "Intriguing properties of Neural Networks"

Background: Verification

- Given a program *P* and property φ , does *P* satisfy φ ?
 - Option 1: *prove* that property φ holds
 - Option 2: provide a *counter-example* showing that it does not

Background: Verification

- Stronger guarantees than testing: holds for *any* possible input
 - Not just a finite set that was tested



[3] Liu et al. 2019 CARS Workshop on NeuralVerification.jl

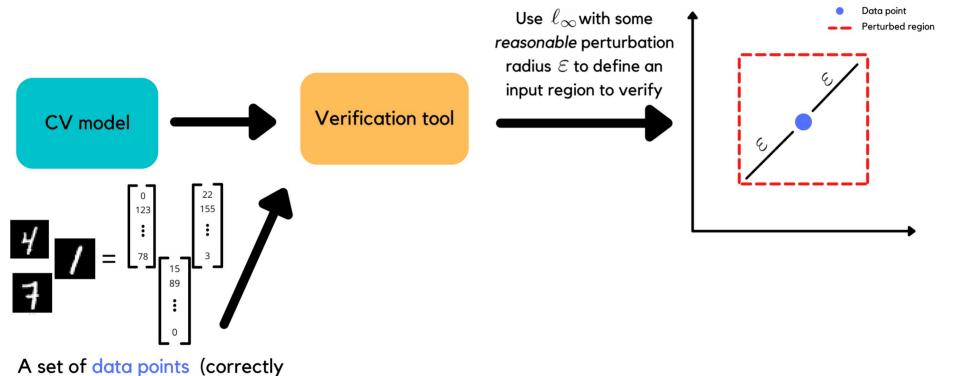
• How can we formulate the robustness property for the sentiment classification problem in a form which is amenable for formal verification analysis?

- How can we formulate the robustness property for the sentiment classification problem in a form which is amenable for formal verification analysis?
- What complexity of feedforward neural networks for the sentiment classification problem can be verified by existing verification tools?

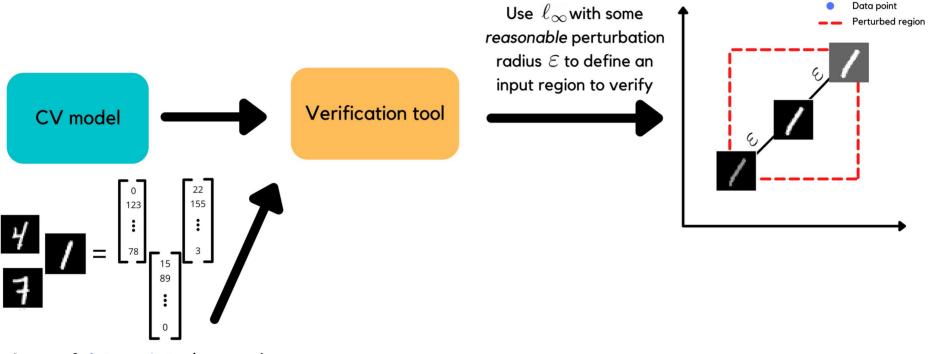
- How can we formulate the robustness property for the sentiment classification problem in a form which is amenable for formal verification analysis?
- What complexity of feedforward neural networks for the sentiment classification problem can be verified by existing verification tools?
- Do neural networks with piecewise-linearly approximated activation functions perform just as well and is training them equally efficient as with smooth activation functions?

• How can we formulate the robustness property for the sentiment classification problem in a form which is amenable for formal verification analysis?

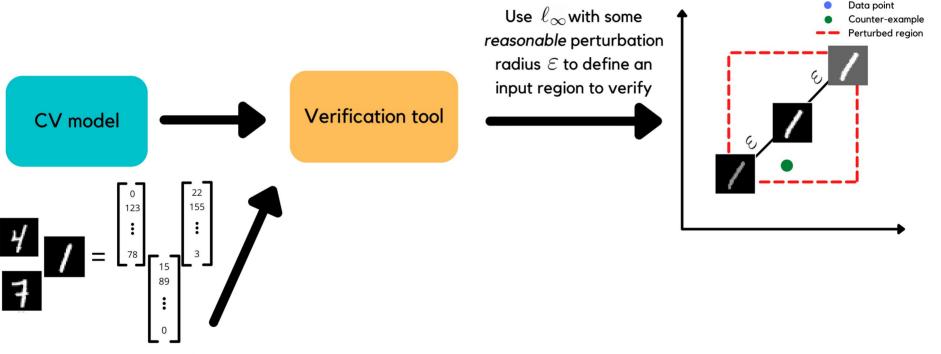
Methods



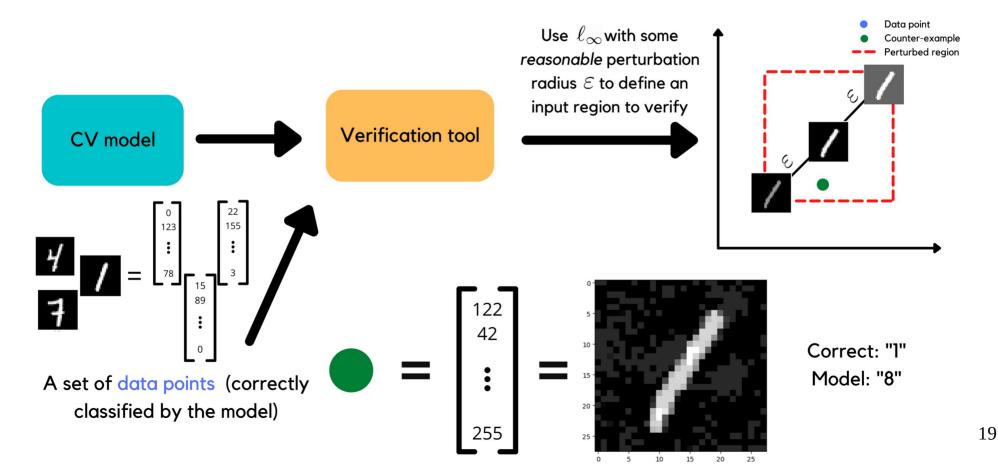
classified by the model)



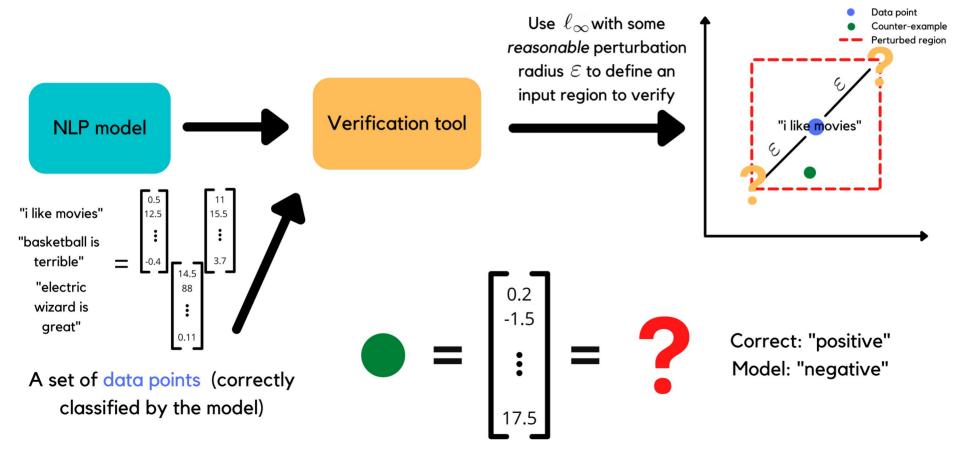
A set of data points (correctly classified by the model)



A set of data points (correctly classified by the model)



Problems for NLP robustness interpretation



• Are semantically similar sentences in the latent space nearby each other by Chebyshev distance?

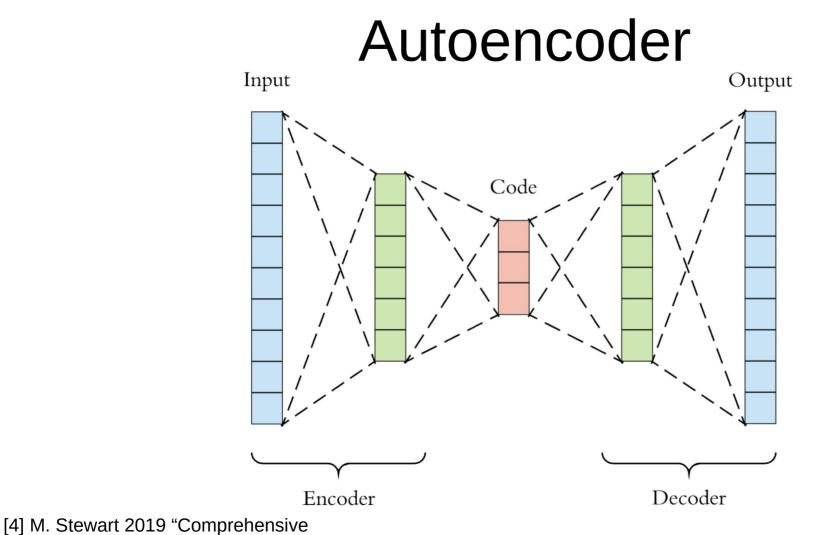
- Are semantically similar sentences in the latent space nearby each other by Chebyshev distance?
 - Try different text encoding methods: GloVe, FastText, Doc2Vec, USE, InferSent, DistilRoBERTa. Even better: autoencoders?

- Are semantically similar sentences in the latent space nearby each other by Chebyshev distance?
- The perturbation radius ε is no longer interpretable

- Are semantically similar sentences in the latent space nearby each other by Chebyshev distance?
- The perturbation radius ε is no longer interpretable
 - Try different values, try nearest neighbours

- Are semantically similar sentences in the latent space nearby each other by Chebyshev distance?
- The perturbation radius ε is no longer interpretable
- Counter-examples cannot be directly converted to discrete input space (text)

- Are semantically similar sentences in the latent space nearby each other by Chebyshev distance?
- The perturbation radius ε is no longer interpretable
- Counter-examples cannot be directly converted to discrete input space (text)
 - K-nearest neighbours
 - Autoencoder



27

Introduction to Autoencoders"

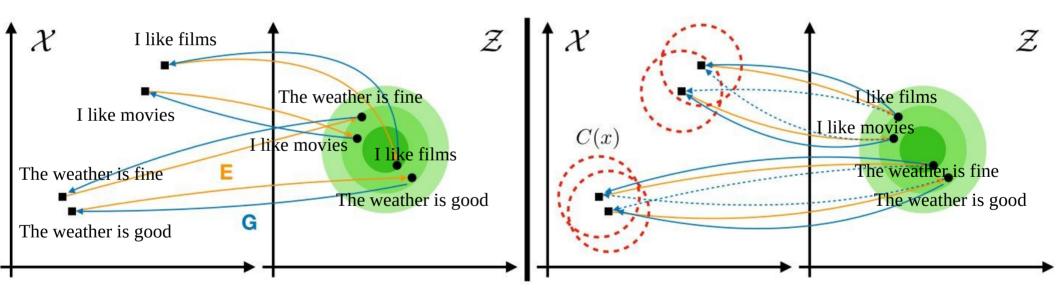
Denoising Adversarial Autoencoder (DAAE)

Educating Text Autoencoders: Latent Representation Guidance via Denoising

Tianxiao Shen¹ Jonas Mueller² Regina Barzilay¹ Tommi Jaakkola¹

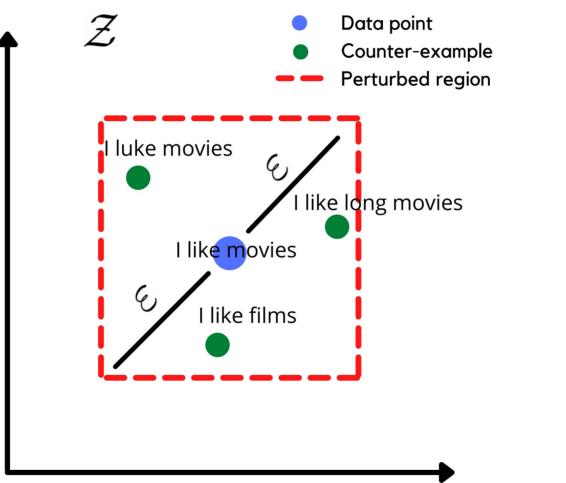
Denoising Adversarial Autoencoder (DAAE)

Educating Text Autoencoders: Latent Representation Guidance via Denoising



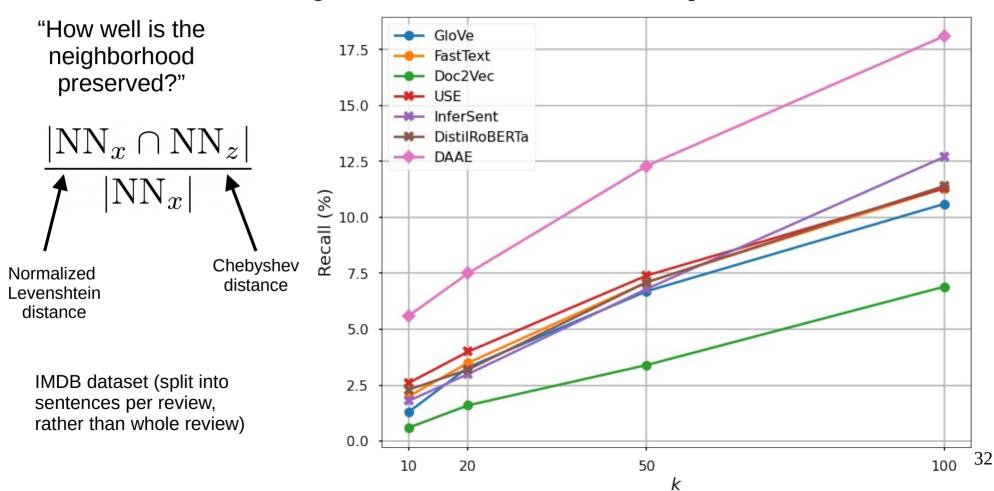
[5] Shen et al. 2020 "Educating Text Autoencoders: Latent Representation Guidance via Denoising"

Hypothesis for an ideal latent space

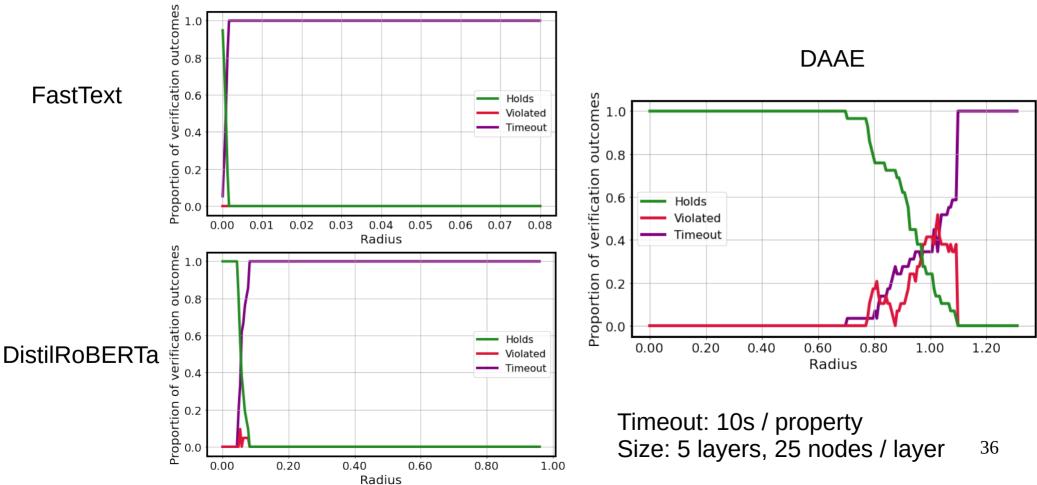


Results

Analysis of latent spaces

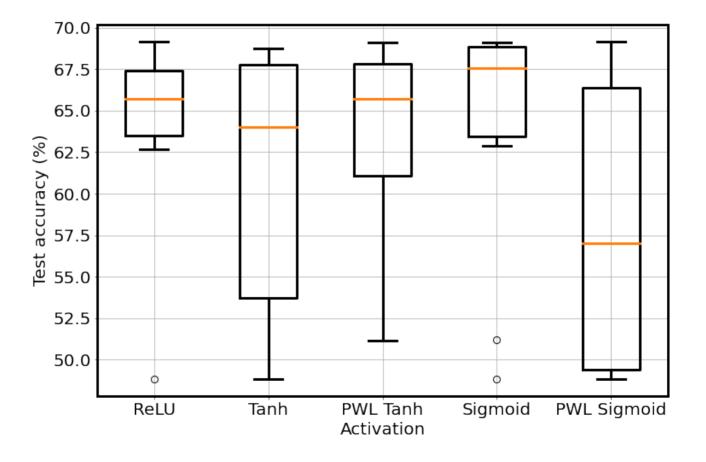


Robustness verification for NLP DNNs

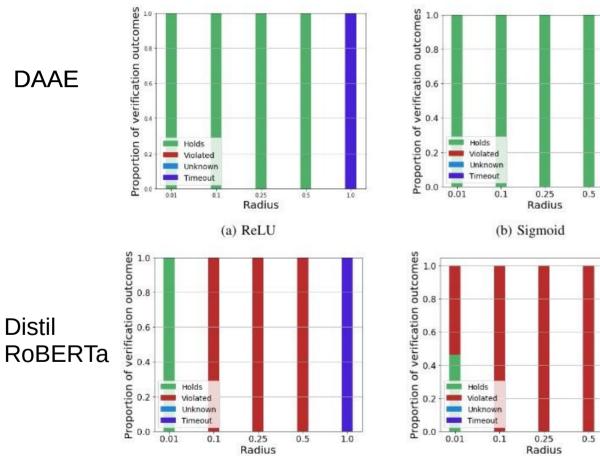


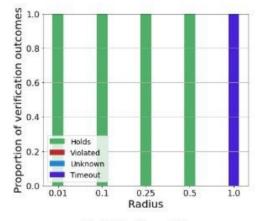
PWL activation trade-offs

Only networks that performed well considered (smaller size, no InferSent or DAAE encodings)

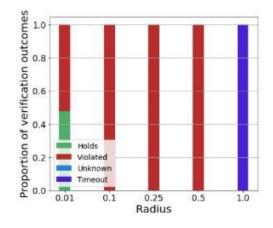


Timeout: 200s PWL activation trade-offs





(c) PWL Sigmoid



(a) ReLU

(b) Sigmoid

1.0

1.0

(c) PWL Sigmoid

Conclusion

- DAAE induced latent space is useful for robustness
 - Performs better than average word embeddings, sentence encoders, even BERT-based models
- KNN is a good way to interpret the perturbation radius, but autoencoders are more fine-grained and generate new samples

Conclusion

- DAAE induced latent space is useful for robustness
 - Performs better than average word embeddings, sentence encoders, even BERT-based models
- KNN is a good way to interpret the perturbation radius, but autoencoders are more fine-grained and generate new samples
- Network sizes and perturbation radius affects the efficiency of the solvers

Conclusion

- DAAE induced latent space is useful for robustness
 - Performs better than average word embeddings, sentence encoders, even BERT-based models
- KNN is a good way to interpret the perturbation radius, but autoencoders are more fine-grained and generate new samples
- Network sizes and perturbation radius affects the efficiency of the solvers
- PWL activation functions can be trained rather efficiently and produce comparable results to smooth versions
- Activation functions affect the verification results

- DAAE induced latent space is useful for robiness
 - Performs hetter than average word in perblin s, sentence encoders evan / ERT-base in or is

CILS

- KNN is a good way to be use reather en upor an dius, but autoencode s an ino e file ura ne aginerate new samples
- Network sign provide adjustation of the solvers
- PWL activation and another scan be trained rather efficiently and produce comparable results to smooth versions
- Activation functions affect the verification results

Thank you for your attention. Questions?

References

[1] Szegedy et al. 2014 "Intriguing properties of Neural Networks"
[2] Huang et al. 2019 "Achieving verified robustness to symbol substitution"
[3] Liu et al. 2019 CARS Workshop on NeuralVerification.jl. Accessed at: https://github.com/sisl/NeuralVerification-CARS-Workshop
[4] M. Stewart, 2019 "Comprehensive Introduction to Autoencoders", Accessed at: https://towardsdatascience.com/generating-images-withautoencoders-77fd3a8dd368
[5] Shen et al. 2020 "Educating Text Autoencoders: Latent Representation Guidance via Denoising"