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What is the problem?
● Deep neural networks (DNNs) are a strong 

method of modelling data
● Reported to achieve superhuman performance 

across a wide variety of tasks



What is the problem?

[1] Szegedy et al. 2014 “Intriguing properties of Neural Networks”



What is the problem?

[2] Huang et al. 2019 “Achieving verified robustness to symbol substitution”



How can we solve this?
● Prove that the deep neural network is robust 

against adversarial examples using formal 
verification

● I aim to explore perturbations in the 
latent/encoding space
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Background: Robustness
● For slight perturbations/alterations of the input 

that are indistinguishable to a human, will the 
model’s output stay correct?

[1] Szegedy et al. 2014 “Intriguing properties of Neural Networks”
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Background: Verification
● Given a program P and property φ, does P satisfy φ?

– Option 1: prove that property φ holds

– Option 2: provide a counter-example showing that it does 
not
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Background: Verification
● Stronger guarantees than testing: holds for any possible 

input

– Not just a finite set that was tested

[3] Liu et al. 2019 CARS Workshop on 
NeuralVerification.jl
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Research questions
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Research questions
● How can we formulate the robustness property for the 

sentiment classification problem in a form which is amenable 
for formal verification analysis?
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Research questions
● How can we formulate the robustness property for the 

sentiment classification problem in a form which is amenable 
for formal verification analysis?

● What complexity of feedforward neural networks for the 
sentiment classification problem can be verified by existing 
verification tools?

● Do neural networks with piecewise-linearly approximated 
activation functions perform just as well and is training them 
equally efficient as with smooth activation functions?
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Research questions
● How can we formulate the robustness property for the 

sentiment classification problem in a form which is amenable 
for formal verification analysis?
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Methods
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Robustness verification for CV
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Robustness verification for CV
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Robustness verification for CV
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Robustness verification for CV
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Problems for NLP robustness 
interpretation
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● Are semantically similar sentences in the latent space nearby 
each other by Chebyshev distance?

Methods for NLP robustness 
interpretation
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● Are semantically similar sentences in the latent space nearby 
each other by Chebyshev distance?

– Try different text encoding methods: GloVe, FastText, 
Doc2Vec, USE, InferSent, DistilRoBERTa. Even better: 
autoencoders?

Methods for NLP robustness 
interpretation
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● Are semantically similar sentences in the latent space nearby 
each other by Chebyshev distance?

● The perturbation radius ε is no longer interpretable

Methods for NLP robustness 
interpretation
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● Are semantically similar sentences in the latent space nearby 
each other by Chebyshev distance?

● The perturbation radius ε is no longer interpretable

– Try different values, try nearest neighbours

Methods for NLP robustness 
interpretation
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● Are semantically similar sentences in the latent space nearby 
each other by Chebyshev distance?

● The perturbation radius ε is no longer interpretable

● Counter-examples cannot be directly converted to discrete 
input space (text)

Methods for NLP robustness 
interpretation
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● Are semantically similar sentences in the latent space nearby 
each other by Chebyshev distance?

● The perturbation radius ε is no longer interpretable

● Counter-examples cannot be directly converted to discrete 
input space (text)

– K-nearest neighbours

– Autoencoder

Methods for NLP robustness 
interpretation
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Autoencoder

[4] M. Stewart 2019 “Comprehensive 
Introduction to Autoencoders”
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Denoising Adversarial Autoencoder 
(DAAE)
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Denoising Adversarial Autoencoder 
(DAAE)

I like films

I like movies

The weather is fine

The weather is good

The weather is good

I like filmsI like movies

The weather is fine

The weather is fine

The weather is good

I like films

I like movies

[5] Shen et al. 2020 “Educating Text Autoencoders: 
Latent Representation Guidance via Denoising”
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Hypothesis for an ideal latent space
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Results



32

Analysis of latent spaces
“How well is the 
neighborhood 
preserved?”

IMDB dataset (split into 
sentences per review, 
rather than whole review)

Normalized  
Levenshtein 

distance

Chebyshev 
distance
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Robustness verification for NLP DNNs

FastText

DistilRoBERTa

DAAE

Timeout: 10s / property
Size: 5 layers, 25 nodes / layer
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PWL activation trade-offs

Only networks that 
performed well 
considered (smaller 
size, no InferSent or 
DAAE encodings)
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PWL activation trade-offs

DAAEDAAE

Distil
RoBERTa

Timeout: 200s 
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Conclusion
● DAAE induced latent space is useful for robustness 

– Performs better than average word embeddings, sentence 
encoders, even BERT-based models

● KNN is a good way to interpret the perturbation radius, but 
autoencoders are more fine-grained and generate new samples
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solvers
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● PWL activation functions can be trained rather efficiently and 
produce comparable results to smooth versions

● Activation functions affect the verification results
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Conclusion
● DAAE induced latent space is useful for robustness 

– Performs better than average word embeddings, sentence 
encoders, even BERT-based models

● KNN is a good way to interpret the perturbation radius, but 
autoencoders are more fine-grained and generate new samples

● Network sizes and perturbation radius affects the efficiency of the 
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produce comparable results to smooth versions
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Thank you for your attention.
Questions?
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