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What Is the problem?

* Deep neural networks (DNNSs) are a strong
method of modelling data

* Reported to achieve superhuman performance
across a wide variety of tasks



What is the problem?
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What Is the problem?

Prediction | SST word-level examples (by exhaustive verification, not by adversarial attack)

+ it > s the kind of pigeonhole-resisting romp that hollywood too rarely provides .

- it * s the kind of pigeonhole-resisting romp that hollywood too rarely gives .

- sets up a nice concept for its fiftysomething leading ladies , but fails loudly in execution .

+ sets up a nice concept for its fiftysomething leading ladies , but fails aloud in execution .
Prediction | SST character level examples (by exhaustive verification, not by adversarial attack)

- you ~ ve seen them a million times .

+ you ’ ve sern them a million times .

+ choose your reaction : a. ) that sure is funny !

choose tour reaction : a. ) that sure is funny !

[2] Huang et al. 2019 “Achieving verified robustness to symbol substitution”



How can we solve this?

* Prove that the deep neural network is robust
against adversarial examples using formal

verification

* | aim to explore perturbations in the
latent/encoding space



Background: Robustness

* For slight perturbations/alterations of the input
that are indistinguishable to a human, will the
model’s output stay correct?
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Background: Verification

* Given a program P and property ¢, does P satisfy ¢?
— Option 1: prove that property ¢ holds

— Option 2: provide a counter-example showing that it does
not



Background: Verification

e Stronger guarantees than testing: holds for any possible
Input
— Not just a finite set that was tested

Simulation
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[3] Liu et al. 2019 CARS Workshop on
NeuralVerification.jl



Research questions
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Research questions

 How can we formulate the robustness property for the
sentiment classification problem in a form which is amenable
for formal verification analysis?
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Research questions

 How can we formulate the robustness property for the
sentiment classification problem in a form which is amenable

for formal verification analysis?

 What complexity of feedforward neural networks for the
sentiment classification problem can be verified by existing

verification tools?
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Research questions

 How can we formulate the robustness property for the
sentiment classification problem in a form which is amenable
for formal verification analysis?

* What complexity of feedforward neural networks for the
sentiment classification problem can be verified by existing
verification tools?

* Do neural networks with piecewise-linearly approximated
activation functions perform just as well and is training them
equally efficient as with smooth activation functions?
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Research questions

 How can we formulate the robustness property for the
sentiment classification problem in a form which is amenable
for formal verification analysis?
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Methods



Robustness verification for CV

- ﬁ Verification tool
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Robustness verification for CV

Use {oowith some 4
reasonable perturbation
radius € to define an

input region to verify
a Verification tool ﬁ

i

A set of data points (correctly
classified by the model)




Robustness verification for CV

. ® Data point
Use KOO with some L ® Counter-example

i = = Perturbed regi
reasonable perturbation erturbed region
radius £ to define an

input region to verify
a Verification tool ﬁ

i

A set of data points (correctly
classified by the model)
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Robustness verification for CV

. ® Data point
Use KOOWIth some L ® Counter-example

e == Perturbed region

o

reasonable perturbation
radius € to define an

input region to verify
q Verification tool ﬁ
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Problems for NLP robustness
Interpretation .

Use KOO with some L ® Counter-example

reasonable perturbation = R s
radius € to define an : ‘ :
input region to verify I |
o . | |
q Verification tool ﬁ I Iionvies |
| |
N
y o |
05 1
"i like movies" 125 15.5
"basketball is : : >
terrible" — |04 37
145
etlectrl.c 88 0.2
wizard is

great" 011 -1.5 N e n
- ‘ — — Correct: "positive
I I
O

A set of data points (correctly Model: "negative

classified by the model) 17.5



Methods for NLP robustness
Interpretation

* Are semantically similar sentences in the latent space nearby

each other by Chebyshev distance?
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Methods for NLP robustness
Interpretation

* Are semantically similar sentences in the latent space nearby
each other by Chebyshev distance?

- Try different text encoding methods: GloVe, FastText,
Doc2Vec, USE, InferSent, DistiiRoBERTa. Even better:
autoencoders?
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Methods for NLP robustness
Interpretation

* Are semantically similar sentences in the latent space nearby
each other by Chebyshev distance?

* The perturbation radius € is no longer interpretable
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Methods for NLP robustness
Interpretation

* Are semantically similar sentences in the latent space nearby
each other by Chebyshev distance?

* The perturbation radius € is no longer interpretable
- Try different values, try nearest neighbours
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Methods for NLP robustness
Interpretation

Are semantically similar sentences in the latent space nearby
each other by Chebyshev distance?

The perturbation radius € is no longer interpretable

Counter-examples cannot be directly converted to discrete
Input space (text)
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Methods for NLP robustness
Interpretation

Are semantically similar sentences in the latent space nearby
each other by Chebyshev distance?

The perturbation radius € is no longer interpretable

Counter-examples cannot be directly converted to discrete
Input space (text)

- K-nearest neighbours
— Autoencoder

26



Autoencoder
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Denoising Adversarial Autoencoder
(DAAE)

Educating Text Autoencoders: Latent Representation Guidance via Denoising

2

Tianxiao Shen! Jonas Mueller> Regina Barzilay' Tommi Jaakkola '
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Denoising Adversarial Autoencoder
(DAAE)

Educating Text Autoencoders: Latent Representation Guidance via Denoising
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[5] Shen et al. 2020 “Educating Text Autoencoders: 29
Latent Representation Guidance via Denoising”



Hypothesis for an ideal latent space
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Results
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Analysis of latent spaces

“How well is the

—&— GloVe
neighborhood 17.5 1 —e— FastText
o —8— Doc2Vec
preserved- o | - use
' =#— InferSent
—%— DistilRoBERTa
INN, N NN, | | e
INN,| S
— 10.0 -
©
@
Normalized Cg_ebyshev @ 7.5 1
Levenshtein Istance
distance
5.0 1
IMDB dataset (split into 25 -
sentences per review,
rather than whole review)
0.0 -

10 20 50 100 32



Robu§tness verification for NLP DNNSs
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PWL activation trade-offs
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Timeout: 200s

WL activation trade-offs
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Conclusion

 DAAE induced latent space is useful for robustness

- Performs better than average word embeddings, sentence
encoders, even BERT-based models

* KNN is a good way to interpret the perturbation radius, but
autoencoders are more fine-grained and generate new samples
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Network sizes and perturbation radius affects the efficiency of the
solvers
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Conclusion

DAAE induced latent space is useful for robustness

- Performs better than average word embeddings, sentence
encoders, even BERT-based models

KNN Is a good way to interpret the perturbation radius, but
autoencoders are more fine-grained and generate new samples

Network sizes and perturbation radius affects the efficiency of the
solvers

PWL activation functions can be trained rather efficiently and
produce comparable results to smooth versions

Activation functions affect the verification results 44



KNN is a go
autoencodelg

Network
solvers
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Thank you for your attention.
Questions?
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