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Abstract

This paper establishes a connection between statistical learning theory (SLT)
and formal learning theory (FLT). We use this insight to connect SLT and dynamic
epistemic logic (DEL) models via the already established FLT and DEL bridge due
to [Gierasimczuk, 2009]. Specifically, we demonstrate that the uniform convergence
property of a hypothesis space implies the finite identifiability of its corresponding
epistemic space which, in turn, can be modelled in DEL [Gierasimczuk, 2009]. This
paper thus lays the foundations of an alternative way to introduce probabilistic
reasoning into DEL, reason about statistical learning scenarios topologically, and
investigate the epistemology of statistical learning theory.
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1 Introduction and Motivation

Learning is a process greatly important to the navigation of the world around us. Specif-
ically, in the broadest sense, learning for an agent may be thought of as the means by
which they come to know new information. Learning may be done through observing
something in the external world through sensory perception systems (for example, looking
at the clock on the wall and learning that the time is noon), or by deducing a new claim
from existing knowledge the agent holds in their heads (for example, if the agent knows
the independent facts that "Mark will go to the park if it is sunny" and that "it is sunny",
they can logically deduce and thus learn the fact that "Mark is at the park"), or through
any method in between. Colloquially, these types of learning may be considered to be of a
more a posteriori versus a priori nature, respectively, which is merely one way by which
learning processes can differ.

Why exactly is learning important? One reason for this is that agents – whether human,
or artificial – have goals, and achieving goals is easy to the extent that one has learned
an accurate model of the world. For example, you might be investing in real estate,
choosing between a few different options, and to settle upon the right choice (where the
"right" choice refers to the one that maximizes some criteria you care about, such as net
profit from selling it later) you presumably think about to what extent a given choice has
maximized that criteria in the past (for example, by thinking about how much values of
properties in a certain area have risen over time) and then choose the one with the highest
expected reward with regards to that criteria.

In other words, you have learned a certain model of the world – a model about how
different properties maximize your reward – from either investing in properties directly
yourself or by observing the investments of others in the past. You then use that model to
make a prediction which matters, in some way, to your well-being as an agent in the end.
This means that learning matters to your well-being as an agent.

Having discussed the meaning of learning in more detail and motivated its importance, a
natural follow-up question is what an optimal theory of learning might look like, in the
prescriptive sense. Intuitively, as we’ve gestured at, a good theory should at least involve
providing the learner with an accurate picture of the world. If the frameworks that form
an agent’s learning machinery cause the agent to possess beliefs about the world that
do not reflect the actual world, and thus (for example) the agent’s beliefs about what
properties are good investments do not actually turn out to be good investments, it would
be difficult to argue for this learning framework being good, insofar as this means enabling
the agent to maximize reward. A good theory is conceivably also not rigid, in the sense
that it should not lead a learner to be overconfident about its beliefs, and be open to
changing them in the light of relevant evidence. All this being said, we postpone further
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Figure 1: The high-level plan of this paper.

discussion of any sort of ideal theory, and claim only that a given theory may possess only
one component of such an ideal. If this holds, combining, or bridging different theories of
learning, would therefore conceivably get us closer to an ideal.

The motivation for working with these two frameworks specifically is as follows. These
two frameworks exemplify a key way in which learning frameworks more generally can
differ. Namely, some frameworks (such as DEL), when embedded into an agent, allow
the agent to learn new information with certainty, while others (such as SLT), when
embedded, supply the agent with information they do not necessarily have full confidence
in. Intuitively, we might prefer to be more certain about how the world appears than
uncertain – as having to update our models about the world takes time and resources
– but being open-minded could reduce minimize risks that stem from placing too much
credence in a model of the world that will eventually turn out to be wrong. Thus, there
are advantages and disadvantages to both frameworks, which will soon be discussed in
more length.

In this paper, we explore the prospect of bridging the aforementioned SLT and DEL
learning frameworks with the motivation of creating a "fused" framework that combines
the advantages of logic-based and probabilistic frameworks while minimizing the weaknesses.
To do this, we will first explain SLT and DEL and the motivations for developing them in
more detail, so as to set up the bridging. Then, we bridge the two frameworks by stating
a correspondence between fundamental objects in both frameworks. We subsequently
use this correspondence to show how uniform convergence of a hypothesis space can be
modelled in FLT. We conclude by briefly considering what further work could be done to
connect these frameworks.
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2 Statistical Learning Theory

Statistical learning theory (SLT) was developed to serve as the mathematical foundations
for machine learning. More precisely, some of the questions that SLT seeks to answer are:

1. How much training data is needed to minimize the risk of error to a desired extent
with a certain likelihood? (probably approximately correct learning)

2. How can we describe the extent to which a set of data is learnable at all? (Vapnik-
Chervonenkis-dimension)

3. How well is a class of possible predictor functions able to fit random noise? (Rademacher
complexity)

SLT is used mainly in the context of supervised learning problems. That is, the theory of
statistical learning deals with making predictions about regression and classification tasks,
as opposed to ones where algorithms are trying to learn patterns from unlabeled data
[Shalev-Shwartz and Ben-David, 2014]. Thus, in discussing SLT as a theory of learning,
the type of learning we will be concerned with is supervised learning.

We can think of SLT as defining and modeling learning in the following manner. When
a learner (implicitly, a computer program, specifically a learning algorithm) is said to
have learned something, it means that, with the learner having seen multiple instances
of ordered pairs (x1, y1), . . . , (xn, yn), it is able to determine the correct label y for a new
given vector of features x, with this pair (x, y) not in the initial set of ordered pairs with
an arbitrarily high degree of probability.

More formally, following the definitions of [Shalev-Shwartz and Ben-David, 2014], the
learner is given access to a set S = {(x1, y1), . . . (xn, yn)} of training data, where x ∈ X
and X is the set of objects that we want to label and y ∈ Y where Y is the set of
possible labels (usually assumed to be {0, 1} in literature for simplicity), generated by
some (unknown to the learner) probability distribution D. The task of the learner is to
choose a classifier function h : X → Y , from a class of hypotheses H, that predicts the
label of new domain points.

The measure of success for the learner is the risk of the classifier that the learner selects,
or the probability that the classifier outputs the correct label for a given point. Risk may
be defined in a few different ways, but perhaps one of the most canonical is empirical risk
(with respect to a given set of training data S), denoted by:

LS(h) :=
|{i ∈ [m] : h(xi) ̸= yi}|

m

and interpreted as the proportion of the training data that h classifies the input differently
from the (unknown to the learner) ideal labeling function f . Another common type of risk
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may simply give us the probability, with respect to the underlying distribution generating
the training data, that h will differ from f . This may simply be expressed as:

LD,f (h) = Px∼D[h(x) ̸= f(x)]

Learners differ in the way by which they select the classifier function. One plausible, and
perhaps most intuitive, way of doing this selection is by simply choosing the classifier
which minimizes risk, or agrees the most with f . This common learning paradigm is known
as empirical risk minimization (ERM).

Some of the most interesting results of SLT have to do with predicting how much training
data is needed to obtain a classifier that outputs the correct label to a desired level
of accuracy. For example, if we assume that a perfect classifier f exists for a given
classification problem with H being the hypothesis class under consideration, for any
choice of δ ∈ (0, 1), ϵ > 0, and for an integer m satisfying m ⩾ ln(|H|/δ)

ϵ
(interpreted as the

cardinality of the training set), running an ERM-learner over H guarantees that:

LD(hS) ⩽ ϵ

with at least probability 1 − δ. Though this is a relatively rudimentary result of SLT,
it is illuminating in that it reveals just how much training data is needed in order to
obtain a classifier of a desired level of accuracy (represented by the ϵ term) to a desired
degree of probability (represented by the δ term). With parameters for both accuracy
and probability present, this result demonstrates what is canonically referred to in the
literature as probably-approximately correct (PAC) learning, defined more precisely below:

All in all, in SLT, learning is interpreted as an agent selecting a maximally accurate
classifier function, based on some amount of training data provided. As classification and
regression problems are ubiquitous in the real world (e.g. in medicine, classifying tumors,
or by banks, deciding whether or not to grant a loan), statistical learning has the benefit
of being quite practically useful, even if learners do not converge to conclusions (i.e. the
correct classifier function) with certainty. Developing and expanding SLT would therefore
amplify these benefits.

3 Dynamic Epistemic Logic

Dynamic Epistemic Logic (DEL) was developed in order to deal with change in epistemic
models. Specifically, in a multi-agent scenario, with each agent’s knowledge and beliefs
expressed by epistemic logic formulas, DEL is able to describe how the knowledge and
beliefs of the agents change after an event.

To describe DEL, it may first be more fruitful to delve briefly into epistemic logic, of which
DEL is eponymously the dynamic version. Epistemic logic was constructed to formally
model epistemic principles and to explore their implications [Rendsvig et al., 2023]. Such
epistemic principles are typically characterized by statements about knowledge and belief.
For example, the well known axioms:
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KB1 : Kaφ→ Baφ

KB2 : Baφ→ KaBaφ

which stand for "agent a knowing φ implies agent a believes φ" and "agent a believing φ
implies agent a knows that they believe φ" respectively.

There are at least a couple of reasons we should want to use this sort of logical framework
to model knowledge and belief. One is for precision. This language can capture precisely
what an agent knows or believes and what it does not, and allows one to deduce additional
statements about this with certainty. For instance, knowing with certainty that agent
A knows φ, knowing that knowing φ implies knowing ψ, by KB1, we can deduce with
certainty that A also believes ψ. Such certainty about knowledge could conceivably be
useful in game-theoretic scenarios, where having information about what different agents
know and believe could help predict their actions, thus enabling a given agent to pick
the highest utility action for themselves. The semantics of epistemic logic (the dynamic
version of which we will see shortly), being based on possible worlds, also coheres nicely
with the developments made in late 20th century philosophy, of which possible worlds
form a large theme.

Specifically, the epistemic logic formulas are evaluated on Kripke models.

Definition 3.1 (Kripke model) A standard Kripke model is a triple

M = (S, {Ri}i∈I , ||.||, s∗),

with S representing a set of possible worlds, {Ri} ⊆ S × S a family of binary accessibility
relations (indexed by labels i ∈ I), ||.|| : Φ → P (S) a valuation assigning to each p ∈ Φ a
set ||p||M of states, and s∗ the actual/designated world.

In the context of epistemic logic and in a single-agent setting, there are just two accessibility
relations in the family: ones representing knowledge and belief, which may be notated
as ∼ and →, respectively. For two worlds a, b ∈ S, a ∼ b may be interpreted as an
agent not being able to distinguish a from b if a were the true state. Multi-agent Kripke
models M = (S, { a−→}a∈A, ||.||, s∗) are similar to the single agent version, apart from the
accessibility relations, which are modified to reflect the knowledge of merely one given
agent a ∈ A in the multi-agent scenario.

As foreshadowed by the name, DEL is the dynamic version of epistemic logic, and is able
to model updates to the situation, in terms of agents gaining new information. More
specifically, where some new information φ is learned with certainty, the update !φ is
performed on the model, which corresponds to eliminating all the states in which φ does
not hold [Baltag, 2023a]. That is, the new set of worlds after the update is:

||φS|| = {w ∈ S : w |=S φ}
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DEL is perhaps best illustrated further via use of examples. Public announcement logic
(PAL) is one such example of the more general DEL we have thus far sketched out,
and is used to reason about changes in knowledge and belief of agents after (assumed)
truthful announcements have been made. To set up an example, PAL is defined by adding
modalities to basic multi-modal logic:

Definition 3.2 (Syntax of PAL)

φ := p | ¬φ | φ ∨ ψ | Kaφ | [!φ]ψ

with p ∈ Prop and a ∈ A, where A is the set of agents, and Kaφ means that "agent a
knows φ, and [!φ]ψ stands for the dynamic update (to be explained more precisely). The
respective semantics are found below:

Definition 3.3 (Semantics of PAL)

• M,w |= p iff w ∈ V (p)

• M,w |= ¬φ iff not M,w |= φ

• M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ

• M,w |= Kiφ iff for every w′ ∈ St such that w ∼i w
′ we have M,w′ |= φ

• M,w |= [!φ]ψ iff if M, w |= φ then M | φ,w |= ψ

To illustrate PAL in action, we consider the canonical muddy children puzzle. The
description is as follows [Baltag and Renne, 2016]:

The Muddy Children Puzzle: Three children are playing in the mud. Father calls
the children to the house, arranging them in a semicircle so that each child can clearly
see every other child. “At least one of you has mud on your forehead”, says Father. The
children look around, each examining every other child’s forehead. Of course, no child can
examine his or her own. Father continues, “If you know whether your forehead is dirty,
then step forward now”. No child steps forward. Father repeats himself a second time,
“If you know whether your forehead is dirty, then step forward now”. Some but not all of
the children step forward. Father repeats himself a third time, “If you know whether your
forehead is dirty, then step forward now”. All of the remaining children step forward. How
many children have muddy foreheads?

The situation can be modeled using PAL, specifically in the form of a directed graph,
where each node represents a possible world (in that world "cdd", with "c" representing
"clean" means the foreheads of children 2 and 3 are muddy, while "ccc" means that
the heads of all children are clean, and so on), and each bidirectional edge with label
l = i ∈ {1, 2, 3} between nodes signifies that the two worlds wk, wj between which the
edge is exists are indistinguishable to child l. Further, di in this setup is the (atomic)
PAL formula representing the proposition "child i is dirty" and each world satisfies the
respective conjunction of such atoms (e.g. ¬d1∧d2∧d3 is true at world cdd). If we assume
that both children 1 and 2 have mud on their foreheads – that is, that "ddc" is the actual
world, satisfying d1 ∧ d2 ∧¬d3, before the first announcement, the initial model is rendered
in Figure 2.
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Figure 2: The initial model of the Muddy Children Puzzle, before any announcements
have been made.

The first announcement constitutes an update to the model, in turn eliminating some of
the possible worlds and edges from consideration for being the actual world. Specifically,
it can be seen as an update !(d1 ∨ d2 ∨ d3) that results in the model in Figure 3.

Figure 3: A model of the Muddy Children Puzzle after the first announcement.

For brevity, we do not consider how the rest of the scenario plays out, but eventually
in continuing updates in this fashion, only the true world will remain in the model. In
other words, PAL (and therefore, DEL) can model how a situation involving information
change progresses, specifying what each agent knows at which juncture, and can be used
to converge on the true world and the propositions it contains (assuming the updates or
public announcements are themselves truthful).

To step back a bit more, the novel contribution of DEL could be then thought of as being a
tool that enables one to converge to reason with certainty, as it pertains to matters about
the external world (e.g. which children have muddy foreheads) and the knowledge and
beliefs of others. This ability to model mental states of agents and to represent changes in
these over time is specifically what distinguishes DEL from other logics, attributing to it
the labels "epistemic" and "dynamic" respectively. This, in turn, can be useful, because
insofar as agents strive to maximize utility in real-world settings, and that the real world
contains many different agents whose goals may be at odds with each other, being able to
accurately keep track of knowledge based on public announcements can guide the agent
on how to act.
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Some key questions the study of DEL seeks to answer are:

1. What are the best ways to logically represent common and distributed knowledge?

2. How should actions or announcements in the world affect one’s knowledge and beliefs?
What are implications of different types of actions (e.g. public vs. private, truthful
vs. deceptive)?

3. How can DEL be integrated with other logical systems, such as temporal and modal
logic?

In DEL, therefore, learning is the process of an agent gaining new information about the
world in the form of logical propositions, unlike the learning of a classifier function in SLT.
Specifying how to translate information from the world into logical form seems intuitively
more challenging than encoding it as vector components as in SLT, but DEL has the
advantage of representing knowledge of an agent as being certain, whereas in SLT agents
only "know" propositions with a probability. Yet, the precise range of problems that DEL
is applied to are seemingly narrower than SLT.

4 From statistical learning theory to formal learning
theory

The goal of this and the subsequent sections is to attempt to bridge the mathematical
setups of SLT and DEL. We will do so by first bridging SLT and formal learning theory
(FLT). We propose that if we can bridge the setups of SLT and FLT, we could use the
already established link between FLT and DEL [Gierasimczuk, 2009] to, in turn, bridge
SLT and DEL as is illustrated in Figure 1. FLT was first presented in [Gold, 1967], a field
investigating inductive learnability of concepts in the limit. [Baltag, 2023b] motivated
FLT laconically:

"Why formal learning theory? Flexible and open-ended approach for inductive
learning from successful observations. While most other approaches adopt a
normative stance, FLT gives the learner a high degree of freedom, allowing the
choice of any learner that produces conjectures based on the data (no matter
how ‘crazy’ or unjustified are these conjectures, or how erratic is the process
of belief change)."

While [Gierasimczuk et al., 2014] described the process of data aggregation in FLT com-
prehensively:

"To illustrate, consider a game between a learner and nature (or teacher) where
the learner needs to identify the current state of the world. We assume that the
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incoming information is readable and that all the data that are consistent with
the actual world are eventually presented to the learner. The source of data is
also taken to be truthful (since nature never lies). This game is described as
follows. Initially, there is a class of concepts (or class of realities). Intuitively,
this class represents the uncertainty range of the learner. Nature chooses at
the beginning of the game one of these concepts to be the target concept and
starts providing to the learner pieces of data concerning the target concept.
The learner’s aim is to guess correctly which concept from the class is the one
chosen by nature. If the learner succeeds, we say that the learner identifies (or
learns) the target concept. If the learner identifies every concept of the class,
we say that the learner identifies the class of concepts."

Our point of departure in this section will be the works [Gierasimczuk, 2009] and
[Gierasimczuk et al., 2014]. These papers investigated the connection between inductive
learning and DEL which is convenient for our purposes because SLT is a paradigm for
studying inductive learning while DEL, traditionally, is not.

There are a few things lacking in the mentioned works, however – to be able to fully
transport the questions, objects, and results from SLT to DEL. Specifically:

• DEL primarily deals with aggregating incoming information about one scenario or
data subject, its internal model is updated one feature/epistemic fact at a time. SLT,
on the other hand, processes various features of the data subject "in one go", usually
all of the features of the data subject’s are represented in a single vector.

• The outcome of a DEL learning process is a Kripke model with the agents’ beliefs
about the true situation and is traditionally not used to predict the outcome of new
data. On the contrary, the outcome of an SLT learning process is a function that
fits the past data and can be used for predicting the outcome of new data.

• DEL can deal with multiple agents, in SLT there are no agents. At best, in SLT we
can identify a single agent - the learner.

• DEL deals with modelling the knowability and belief of agents, SLT cannot model
such scenarios, it primarily deals with predicting an integer (classification task) or a
real number (regression task).

• In DEL, there is no quantitative measure of success, only subjectively qualitative
("what does each agent know and believe?", "how can we use this Kripke model,
having incorporated the epistemic facts?"). In SLT, we have a well-formalized notion
of risk and accuracy which serve as the quantitative measures of success.

The aforementioned differences are substantial, but not impossible to overcome. This is
another reason why FLT may prove useful. Forging a link between SLT and DEL directly
seems like a difficult task, while doing that for SLT and FLT first is more straightforward.
Also, in doing so, we can figure out which of these issues are actually worrisome when
trying to bring SLT and DEL frameworks together.
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We now introduce the main definitions of FLT which are based on [Gierasimczuk et al., 2014]
and [Baltag, 2023b].

Definition 4.1 (Epistemic space) Let (S,Φ) be an epistemic space. Here, S is the set
of epistemic possibilities (worlds) and Φ ⊆ P(S) a family of propositions. The propositions
represent facts or observables being true or false in any of the possible worlds under
consideration.

Definition 4.2 (Data stream) A data stream is an infinite sequence of propositions
from Φ, that is,

−→
O = (O1, O2, . . .) which is assumed to be consistent:

⋂∞
i=1Oi ̸= ∅.

A data sequence is any finite initial segment
−→
O [n] = (O1, . . . , On) of a stream.

A data stream
−→
O is sound w.r.t. a world s iff every data observed in

−→
O is true at s, that

is, for all n, s ∈ On.

A data stream
−→
O is complete w.r.t. a world s iff every observable property of s appears

in
−→
O is true at s: ∀n, s ∈ On.

A data stream
−→
O is a data stream for s if it is both sound and complete w.r.t. s.

Definition 4.3 (Learning method (FLT)) A Learning method L is a function that
on input of an epistemic space and a finite sequence of observations

−→
O [n] = (O1, . . . , On)

outputs a hypothesis. The hypothesis is then a set of possible worlds, i.e, a proposition,
so L((S,Φ),

−→
O [n]) ⊆ S.

To establish a formal analogy between learning problems in SLT and FLT, a connection
between their core mathematical constructs must be demonstrated. We will first present
notions in SLT and then discuss their parallels in FLT. After a brief philosophical discussion,
we will present a formal definition.

What is the space of epistemic possibilities? At first, the SLT learner considers
the whole hypothesis space H which is a set of functions. This function space is reliant on
the learning algorithm that we assume, but for this paper we side-step this detail. Since
functions are fully described and differentiated in terms of their input-output behaviour,
they resemble epistemic possibilities, which share that quality - they are characterized by
the propositions which are true at them. So, we can set S = H for the conversion.

What are the observables, the data not necessarily available to the learner
but possible in theory? In SLT that is the true probability distribution D defined on
some domain X . It is also assumed that some true function f exists which labels the data
points in some way. In FLT, that is the family of propositions Φ ⊆ P(S), it represents
all observable facts in theory. We can thus simply set Φ = P(H), each observable O ∈ Φ
would represent a collection of functions which, intuitively, means that O is the set of
functions that fit the data perfectly.
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What are the learner’s hypotheses? The SLT learner, upon seeing some training data
S, returns a single hypothesis function h ∈ H. Note that there may be more hypotheses
that fit the training data perfectly, but the learner outputs one of them. In a similar
manner, the FLT learner, after observing a data sequence

−→
O [n], it returns a hypothesis

h ⊆ S which is a set of epistemic possibilities, representing the set of functions which fit
the data seen. While the SLT learner returns a single output and the FLT learner returns
a set, we think it is intuitively correct and could be mended with small modifications to
either of the frameworks.

What data is available to the learner? The SLT learner receives a finite training
set which is of the form S = {s1, s2, . . . , sn} = {(x1, y1), (x2, y2), . . . , (xn, yn)}. Each si is
a tuple where the first element xi is a multi-dimensional vector describing the properties
of the object to classify and the second element yi ∈ {0, 1} is labeled by some "correct"
function f . The whole learning task in SLT is to approximate f as best as possible. The
training set S is sampled from an arbitrary distribution D. The amount of data points
that we can sample is usually dictated by the situation at hand as the amount of data
available is an important topic of investigation.

In FLT, the data sequence
−→
O [n] is a finite consistent set of propositions. We can

craft a corresponding
−→
O [n] using the training sample S by simply taking each Oi to

be argminh∈H Lsi(h), that is, the set of functions which minimize the risk with respect to
one data point si. Note that

−→
O [n] is indeed consistent (the intersection of all functions is

non-empty) as some of them must agree on how to fit certain data points.

To view a summary of these definitions at a glance, see Table 1.

Definition 4.4 (SLT model to FLT model) Take an SLT model (H, S, L) which is
comprised of a hypothesis space H, training sample S (which is sampled from some true
distribution D), and risk function L. The epistemic space is then a tuple (H,P(H)) and
an arbitrary data stream is

−→
O = (O1, O2, . . .) where each Oi = argminh∈H L{si}(h), that

is, each element Oi is a set of hypotheses which minimizes the risk on that particular data
sample si.

In practice, the hypothesis space is completely dependent on the learning algorithm we
pick (logistic regression, decision tree, neural networks, etc.). However, this conversion is
general enough to account for that as well as the type of distribution we sample from or
the concrete risk function we pick to calculate the errors.

Let us illustrate the conversion with a practical example. We will describe the initial
learning scenario in the SLT framework and then perform the conversion. We will then
use the respective learning algorithms on both results separately and show that the results
are the same. This example will (informally) illustrate that the conversion is correct.

Example 4.1 Let H = {a, b, c, d, e, f, g} be the set of hypothesis functions, the hypothesis
space. Let the training set be

S = {(x1,−), (x2,−), (x3,+), (x4,−), (x5,+)}

12



Statistical Learning Theory Formal Learning Theory
Name Notation Notation Name

Hypothesis
space H S

Epistemic
possibilities

All subsets of
hypotheses P(H) Φ Observables

Min-risk functions on
single training examples ∀si, argminh∈H L{si}(h)

−→
O [n] Data sequence

Learning
algorithm A L Learner

Empirical risk;
True risk LS;LD - No degrees

of success

Table 1: This table demonstrates the correspondence between various mathematical objects
employed in Statistical Learning Theory and their close parallels within Formal Learning
Theory.

where − and + are the negative and positive labels of the samples respectively, labeled
by the true labeling function f . Let L be the usual count-based ratio risk. Assume the
learning algorithm A to be empirical risk minimizer as described in section 2.

Suppose that the hypotheses fit the training set as follows. Given the first data point,
four functions out of seven (the whole hypothesis space) fit it, namely, hypotheses b, d, e, g.
Hypotheses b, d, f, g fit the second data point. Hypotheses a, c, d, e fit the third sample.
Hypotheses a, b, c, d, e, g fit the fourth point. Hypotheses b, c, d fit the fifth point. This
process of which hypotheses fit the data are illustrated in Figure 4 through Figure 8.

Figure 4: The first data point from the training sample is fit by hypotheses b, d, e, g.
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Figure 5: The second data point from the training sample is fit by hypotheses b, d, f, g.

Figure 6: The third data point from the training sample is fit by hypotheses a, c, d, e.
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Figure 7: The fourth data point from the training sample is fit by hypotheses a, b, c, d, e, g.

Figure 8: The fifth data point from the training sample is fit by hypotheses b, c, d.

Because of these facts, the empirical risks of the each of these functions are as follows:

• LS(a) =
3
5
= 0.6. This is because 3 data points out of the training sample of 5 were

not fit by a.

• LS(b) =
1
5
= 0.2

• LS(c) =
2
5
= 0.4

• LS(d) =
5
5
= 0

• LS(e) =
2
5
= 0.4

• LS(f) =
4
5
= 0.8

• LS(g) =
2
5
= 0.4
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So, since the learning method is ERM, we will clearly get that A(S) = {d} since its
empirical risk is the lowest, i.e., d ∈ argminh∈H LS(h).

Now, construct the corresponding epistemic space (H,P(H)) as well as the sequence based
on the training set:

−→
O [5] = (O1, O2, O3, O4, O5). As mentioned in Definition 4.4, each Oi =

argminh∈H Lsi(h) for each si ∈ S. For example, O1 = argminh∈H Ls1(h) = {b, d, e, g}.

It is easy to see (e.g. from Figure 8) that we can set the FLT learner L to be simply
intersection of all observations, namely:

L((H,P(H)),
−→
O [5]) =

⋂
i∈{1,...,5}

Oi = {d}

♠

5 From statistical learning theory to dynamic epistemic
logic

In the previous section, we introduced FLT and conjectured a bit on how a statistical
learning theory model can be converted to an FLT model. We will now use these results
to finish the bridge between SLT and DEL. The main result of this section (and paper)
will be an extended theorem from [Gierasimczuk et al., 2014]. First, however, we must
introduce the necessary concepts of finite identification and a conversion from FLT to
DEL models.

Definition 5.1 (Finite identification) Let (S,Φ) be an epistemic space. A learning
method L finitely identifies s ∈ S if, for every stream

−→
O for s, there exists n ∈ N such

that L((S,Φ),
−→
O [n]) = {s} for all k ⩾ n and L((S,Φ),

−→
O [n]) = ? for all k < n, where ? is

the learner withholding judgement, outputting "I don’t know".

The epistemic space (S,Φ) is said to be finitely identifiable by L if all its worlds are
finitely identifiable by L.

The epistemic space (S,Φ) is finitely identifiable just in case there is a learning method
that can finitely identify it.

As we will see below, this property will be central to the bridging of some concepts between
our learning frameworks in question.

It remains to demonstrate how inductive learning is modeled in DEL, or how one converts
an FLT learning model to a DEL model, as described in [Gierasimczuk et al., 2014].
Conversions like these are necessary to model concepts from one framework in an another
framework. The intuition of this conversion is described below.

Let (S,Φ) be an epistemic space. Take the initial class of sets S to be possible worlds in
an epistemic model. This will reflect the learner’s initial uncertainty over the range of sets.
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The observations that the learner is exposed to will be the events that modify the initial
model.

The agent’s uncertainty is dynamically refined through the incorporation of new data. Data
is presented as propositions received from a source assumed to be completely truthful. In
this context, the agent employs a logic of propositional and epistemic update to eliminate
possible worlds that are inconsistent with the received information. This approach aligns
with learning theory, where the veracity of incoming data is often a foundational assumption,
justifying the use of propositional and epistemic update as a framework for inquiry.

Formally, the transformation from formal learning theory models to dynamic epistemic
models is defined in the following manner [Gierasimczuk et al., 2014].

Definition 5.2 (FLT model to DEL model) Take an epistemic space (S,Φ). For every
proposition in pn ∈ Φ we take a symbol pn ∈ Prop. Moreover, take a set Nom which
contains a nominal symbol i for every i ∈ N. The initial learning model M(S,Φ) is a triple
⟨W,∼, V ⟩, where W := S,∼:= W ×W , V : Prop ∪Nom→ P(W ), such that si ∈ V (pn)
iff si ∈ pn in (S,Φ), and for any i ∈ Nom we set V (i) = {si}.

The following theorem is the central result linking FLT and DEL. It was first proved in
[Gierasimczuk, 2009], but this formulation is taken from [Gierasimczuk et al., 2014].

Theorem 5.1 The following are equivalent:

1) An epistemic space (S,Φ) is finitely identifiable.

2) For every si ∈ S and every data stream
−→
O for si there is an n ∈ N such that for all

m ⩾ n, M(S,Φ), si |=
[
!
(∧

set
(−→
O [m]

))]
Ki.

Where set(·) operator converts any object into a set (in this case, converts a sequence to a
set).

Part 2) of this theorem is explained by [Gierasimczuk et al., 2014]:

"In terms of propositional knowledge and belief this corresponds to the following:
whatever is true in the actual world I know (believe) that it is true and vice
versa. In other words, we may say: Ki iff for any o ∈ Prop such that si ∈ p
we have that p ⇐⇒ Kp."

We finally have all the ingredients necessary to provide an original contribution. As we’ve
been building up throughout this paper, we would like to link some existing result from
statistical learning theory to part 1) of the aforementioned theorem thus showing that
some part of SLT can be modeled in FLT (and DEL).

In the context of FLT, finite identification refers to the capability of a learning algorithm
to definitively identify an object within a finite number of data presentations [Gold, 1967].
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This implies the algorithm’s ability, for any stream of data for the object in question,
to halt data acquisition after a specific point, having accumulated sufficient evidence to
correctly identify the object. This is a strong condition concerning arbitrary streams of
data for an object.

In SLT, the notion of uniform convergence of a hypothesis space resembles this. The
uniform convergence condition is defined formally in [Shalev-Shwartz and Ben-David, 2014,
p. 55] as follows.

Definition 5.3 (Uniform convergence) A hypothesis class H has the uniform conver-
gence property if there exists a function mUC

H : (0, 1)2 → N such that:

For every ϵ, δ ∈ (0, 1), for every distribution D over X , if S is a sample of m ⩾ mH(ϵ, δ)
i.i.d examples drawn from D, then with probability 1− δ,

suph∈H|LS(h)− LD(h)| ⩽ ϵ

Uniform convergence, similarly like finite identification, is also a strong condition concerning
the theoretically available data for the hypotheses. Informally, uniform convergence says
that each hypothesis in the hypothesis space has both low empirical risk as well as low
true risk if enough samples are given to train on. The precise number of samples for what
is "enough" to ensure low empirical and true risks may be the finite number which would
enable finite identification of corresponding epistemic spaces. We will prove this as the
next theorem.

And so, the main result of this paper which shows that some results of SLT can be
transported to DEL is extending the Theorem 10.6 from [Gierasimczuk et al., 2014] with
an additional equivalence result:

Theorem 5.2 The following are equivalent

1) A hypothesis space H has the uniform convergence property with sample complexity
mUC

H (0, 0).

2) An epistemic space (H,P(H)) is finitely identifiable.

3) For every hi ∈ H and every data stream
−→
O for hi there is an n ∈ N such that for all

m ⩾ n, M(H,P(H)), hi |=
[
!
(∧

set
(−→
O [m]

))]
Ki.

Proof. As mentioned, the statements 2) → 3) and 3) → 2) were proved in [Gierasimczuk, 2009].
Now, we focus on proving 1) → 2) and 2) → 1). If this is proved, then we can prove
1) → 3) by simply transforming the SLT model to FLT and, in turn, to a DEL model and
vice-verse for 3) → 1).

First, let us prove 1) → 2). Assume we have a hypothesis space H which has the uniform
convergence property with sample complexity mUC

H (0, 0). That is, for any distribution D
and ϵ = 0, δ = 0, we have

suph∈H|LS(h)− LD(h)| ⩽ 0
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with probability ⩾ 1−δ = 1−0 = 1. So, if any learning algorithm observes m ⩾ mUC
H (0, 0)

data points, it is guaranteed to output a hypothesis which makes no prediction mistakes,
even when predicting unobserved samples.

Now, convert this SLT scenario to an epistemic space (H,P(H)) as in Definition 4.4. It
remains to show that the epistemic space (H,P(H)) is finitely identifiable, i.e., there is a
learning method L such that finitely identifies all h ∈ H. Recall that a learning method
L finitely identifies h if, for every stream

−→
O for h, there exists a finite number m of

observations such that L((H,P(H)),
−→
O [m]) = {h}.

Since the hypothesis space has the uniform convergence property, which is a property of
the hypothesis space itself and not of the learning method, it allows us to take a very
simple learner. Let L be a (FLT) learning method as follows:

L
(
(H,P(H)),

−→
O [k]

)
=

{
? if k < m

{hm} if k ⩾ m

where m = mUC
H (0, 0) and hm is the hypothesis which is fit on m examples. The intuition

behind arriving at hm is simply due to the fact that the sequence is of size at least m
which "shrinks" the uncertainty substantially, the remaining hypothesis space is reduced
to functions of minimal (in this case, 0) risk. So, L would output the correct hypothesis
fitting the data

−→
O [k] perfectly if it observes at least m data points, otherwise, the learning

method would withhold judgement. Since this is applicable for arbitrary streams
−→
O for

any h, we can say that L finitely identifies (H,P(H)).

We have shown that, due to uniform convergence, the hypothesis space not only has some
finite n ∈ N for any

−→
O for any h ∈ H, but a concrete integer m ⩾ mUC

H (0, 0) which allows
us to construct a learning method to finitely identify the epistemic space (H,P(H)).

□

Let us now turn to proving 2) → 1). Assume the epistemic space (H,P(H)) is finitely
identifiable. We need to show that there is some integer m = mUC

H (0, 0) such that, for
all h ∈ H, suph∈H|LS(h)− LD(h)| = 0. Since the epistemic space is finitely identifiable,
there exists some learner L that finitely identifies it. Specifically, each of h ∈ H is finitely
identifiable, and each stream for h has a finite n ∈ N such that the learner L correctly
identifies h.

Let M = {n1, n2, . . .} where ni is an integer representing a finite time after which hi can
be finitely identified by L. Then, simply take m = max(M). Since the learning in FLT is
deterministic, we have δ = 0. Since we have assumed that

−→
O is consistent, we know that

there will be no mistakes made by L. In addition, the set M comprises the integers after
which L definitely takes a decision, does not ever output ?, so that is not a bother for us
when transferring the result to SLT. From these last two arguments we can conclude that
we can set ϵ = 0. Any ni ∈ M is an integer for any stream for hi, so, on the SLT part,
these results will work for any distribution D over the domain. And so, if S is a training
set of size m ⩾ max(M) drawn from D, then with probability 1− δ = 1 it follows that for
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any h ∈ H,

LS(h) = LD(h) = 0 ⇐⇒
LS(h)− LD(h) ⩽ 0 ⇐⇒

suph∈H|LS(h)− LD(h)| ⩽ 0 = ϵ

Thus, H has the uniform convergence property with sample complexity m = mUC
H (0, 0). □

■

Essentially, the theorem above says that we can model uniform convergence (for a fixed
sample complexity function) in FLT and DEL. If any uncertainty and error is removed
from SLT learning scenarios, it starts to resemble the FLT learning scenarios. The abstract
learnability results of SLT (e.g. every part of the fundamental theorem of statistical
learning theory), just like the results of FLT, deal with a type of "learning in the limit".
SLT deals with more realistic scenarios concerning finite data and puts much more focus on
the specific amount of data necessary to draw conclusions, while FLT is a framework with
less restrictions and often discusses learnability scenarios with infinite data. DEL, on the
other hand, primarily deals with one-step revisions of its epistemic model, something that
both vanilla SLT and FLT lack. However, in Theorem 5.2 we see that DEL is expressive
enough to model the "in the limit" learning scenarios. Once we start to consider specific
learning algorithms (e.g. decision trees, neural networks) which come with their own
specific rules how they incorporate each training sample, the framework of SLT starts to
resemble the DEL learning scenarios.

There is more work to be done to bring all these three frameworks together in order
to crystallize their strengths and differences. We hope that in the process the scientific
community will arrive at results which lead to new understandings of learnability.

6 Conclusion and future work

In this paper we set out to bring the frameworks of statistical learning theory and dynamic
epistemic logic closer. In the process, we have also described how statistical learning
theory learning models can be framed in terms of formal learning theory. We used the
existing result from [Gierasimczuk, 2009] which presented a link between FLT and DEL.
We presented a similar novel result to describe a bridge between SLT and FLT to, in turn,
model some results, specifically, uniform convergence, in DEL.

Our work can be used as a cornerstone for many further investigations of the aforementioned
learning and knowledge frameworks. Some concrete ideas for future work are as follows:

• How do hypotheses spaces that have uniform convergence with mUC
H (ϵ, δ) for ϵ, δ > 0

transfer to FLT? To DEL models? Are the resulting DEL models similar to dynamic
updates with probabilities [Van Benthem et al., 2009]?

• Is the realizability assumption important when transferring the results from SLT to
FLT?
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• What does the no-free-lunch theorem correspond to in FLT and DEL?

• What does VC dimension correspond to in FLT and DEL? What is the epistemic
interpretation of VC dimension?

• There are strong connections between FLT and topology. How can we employ tools
from topology to study concepts of SLT?

• Explore the implications of unique characterisability [Balder ten Cate, 2024] of
worlds in FLT learning models.
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