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Abstract—Deep neural networks are powerful methods for
modelling data and are increasingly deployed as part of safety-
critical systems. Unfortunately, common neural networks evalu-
ation methods draw conclusions which are often too optimistic
for real-life scenarios. In this paper, we investigate verification,
a method that ensures certain properties of neural networks.
Specifically, natural language processing context is considered as
research on verification of networks in this domain is scarce.
We examine the performance of existing verification framework
applications on networks performing sentiment classification as
well as investigate piecewise linear activation function trade-offs.
Moreover, latent space properties of many text representation
techniques are investigated. Our empirical results show that the
latent space induced by an autoencoder trained with a denoising
adversarial objective is useful for verifying robustness of net-
works performing sentiment classification as well as interpeting
results of verification tool outcomes.

Index Terms—Formal Neural Network Verification, Robustness
Verification, Sentiment Classification, Latent Space Analysis,
Piece-Wise Linear Activation Functions

I. INTRODUCTION

Deep neural networks (DNNs) are reported to achieve
superhuman performance across a wide variety of tasks. A
common technique for neural network evaluation is computing
a model’s predictions on a large set of points from the
input space and deciding whether the outcome is as desired.
However, the input space set has essentially infinite cardinality,
meaning it is impossible to check whether the model correctly
predicts the outcome for all possible inputs [1]. Thus, the
performance of the model in the real world, where the en-
countered input data is likely vastly different, may decrease
significantly.

Indeed, DNNs have been shown to be surprisingly fragile.
[2] demonstrated that neural networks for computer vision are
susceptible to small, semantically invariant input perturbations
that lead the model to misclassify. Similar effects have been
observed in the natural language processing (NLP) domain.
Adversarial examples have been found by appending distract-
ing text [3], paraphrasing [4], inserting typos [5], or changing
words in the text with synonyms [6–9].

Since humans are often not fooled by these so-called
adversarial examples, these results bring to light a significant
problem in the models’ understanding. Furthermore, it raises
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Fig. 1: Hyper-rectangle in the latent space enclosing seman-
tically similar sentences. For such a latent space we could
meaningfully verify robustness for NLP models.

serious concerns in situations where incorrect outputs lead to
costly consequences, such as in safety-critical systems or when
these models interact with people.

Previous works turned to data augmentation [10, 11] and
adversarial training [5, 12–14] in an attempt to tackle this
problem. While they have improved performance on adversar-
ial examples, the problem is still not solved. For instance, these
efforts offer no guarantee that stronger attacks cannot break the
system [7]. Formal verification methods provide a guarantee
that the neural network in question possesses specific desir-
able properties. The adversarial robustness property could be
formulated as follows: Points nearby an input example belong
to the same output class as the input.

It has been proven that verifying neural networks with Rec-
tified Linear Unit (ReLU) activations is NP-complete due to
their large non-linear structure [15]. Verification of NLP neural
networks is even more difficult. The input space is discrete
and points in this space are converted to real-valued high-



dimensional vectors in order to benefit from common gradient-
based optimization techniques. The main problem of this is
that representing the text as a vector usually involves some
black-box algorithm which makes it impossible to directly
map back to discrete texts. Previous works have tried avoiding
this issue by applying semantically-invariant perturbations to
the discrete inputs [6, 7]. This is a limited approach because
there is a combinatorial explosion of perturbations possible for
text, and thus the authors were limited to verifying robustness
of specific classes of perturbations like synonym or character
substitutions.

This thesis studies how and to what extent NLP neural
networks can be verified using existing formal verification
frameworks. Since the robustness property closely relies on
the latent space, we investigate verification performance on a
plethora of text encoding techniques. Furthermore, denoising
adversarial autoencoders (DAAE) are leveraged to solve a few
key issues with NLP verification. DAAE encodes text to a
space with a well-behaved geometry, thus it is a favourable
approach for proving robustness for text against a broad class
of adversarial perturbations in the input space. The key idea is
pictured in Figure 1. Verification tools mainly support neural
networks with piece-wise linear activation (PWL) functions
because these functions are more amenable for formal verifi-
cation [16]. It is thus worthwhile to investigate performance
and verification trade-offs for neural networks with PWL
activation functions. This work is restricted to verification
of the robustness property as literature for other properties
is very limited. Moreover, the IMDB movie review dataset
[17] was used for training neural networks to perform binary
sentiment classification. This work also only considers feed-
forward neural networks as existing verification frameworks
mainly support only these kinds of networks.

Concretely, this work attempts to answer the following
research questions:

1) How can the robustness property for sentiment classifi-
cation be formulated in a form which is amenable for
formal verification analysis?

2) What complexity of neural networks performing senti-
ment classification can be verified by existing verifica-
tion tools?

3) What are the trade-offs of piecewise-linearly approxi-
mated activation functions in neural networks compared
to their smooth variants?

II. RELATED WORKS

The first computational neural network verification ap-
proaches used satisfiability modulo theory (SMT) solvers [18,
19] to perform verification of neural networks. The approach
was highly limited and could only verify networks with a
single hidden layer and 10-20 hidden nodes. The first efficient
DNN verification tool capable of verifying feed-forward neural
networks (FFNNs) with 8 hidden layers and 300 hidden nodes
per layer was developed by [15]. Authors extended the simplex
algorithm for linear programming to handle non-convex ReLU

activation functions. This work drew the interest of many
researchers and led to an increase in research in this area.

Most current verification tools are limited to verifying
FFNNs with ReLU functions. In general, the existing NN
verification methods can be organized into three categories:
Reachability, optimization, and search [1]. Reachability meth-
ods perform layer-by-layer reachability analysis of the network
[20–23]. Optimization methods create linear constraints for
nonlinear activation functions and attempt to find a configu-
ration that does not satisfy the constraints using optimization.
The optimization methods can be further sub-divided to primal
formulation methods [24–26], dual formulation methods [27,
28], and semidefinite programming [29, 30]. Search methods
are combined with reachability [31–33] or optimization meth-
ods [15, 16, 34] as these approaches provide search directions.

In general, while there has been a vast increase in amount
of neural network verification approaches and tools developed
in recent years, the properties that are chosen to be verified
have not changed. The properties prevalent in literature include
safety and robustness. Verification of a safety - also sometimes
called reachability - property is the process of examining
whether inputs in a specified range are always predicted to be
in some desired range. Robustness seeks to ensure that there
does not exist any points near an input point by some distance
that change the output of the network. [35] investigated richer
properties such as the conservation of energy in a physical
system, the downstream task of handwritten digit addition,
and the semantic change of the predicted label. The property
of equivalence of two networks was studied by [36] but was
restricted to binarized neural networks. [37] also studied the
relationship between two networks and investigated whether
the output logits of the two networks are within some small
distance. Literature on more sophisticated properties than
reachability or robustness exists yet remains scarce and is
not yet widely adopted by the verification community. For
this reason, the present paper will exclusively focus on the
verification of the property of robustness.

[38] compared the types of networks and properties
verified by several existing verification tools. They also
stressed the need of a unified framework and com-
mon benchmarks for DNN verification. Following their
work, a few DNN verification frameworks, such as
NeuralVerification.jl [39] and DNNV [40], emerged
which implemented a plethora of existing verification ap-
proaches. DNNV supports feed-forward and convolutional
neural networks (CNNs) with piece-wise linear activa-
tion functions. While NeuralVerification.jl does
not support CNNs, it provides methods for verifying net-
works with smooth activation functions. This thesis uses
NeuralVerification.jl for NN verification because of
its implementation of a wide range of verification methods,
ease of use and extensive documentation. A thorough com-
parison study of existing verification tools using common
benchmarks and the well-known MNIST dataset was carried
out by [1]. A workshop and competition [41] was held with
a similar goal in mind aiming to compare existing neural



network verification tools and standardize benchmarks.
One of the first works to point out that NLP networks

are susceptible to adversarial examples was written by [3].
In particular, their work showed that appending distracting
sentences to paragraphs of text fooled question-answering
NLP models. Recently, several works have been presented on
building defenses for neural networks against various types of
adversarial attacks. [6] investigated one exponential class of
text transformations: Synonym substitutions. During training,
they employed Interval Bound Propagation (IBP) [27] to min-
imize an upper-bound on worst-case loss that any combination
of word replacements can produce. [7] also modified the loss
with IBP and trained networks with the auxiliary objective
of being efficiently verifiable. They further extended this
approach to symbol substitutions, that is, synonym and mis-
spelling perturbations. Both of the aforementioned approaches
were able to provide certified robustness guarantees for CNN
models, the former method also investigated RNNs. IBP is
also used by [42] to prove robustness against text deletion -
models should not be more confident if valuable words from
a sentence are deleted. Authors also investigated models with
decomposable attention layers.

It is widely accepted that perturbed sentence vectors do
not map back to discrete inputs [12]. However, possible
approaches of doing so have not been investigated explicitly.
This work attempts to bridge this gap.

III. METHODS

A. Numerical text representation

Optimization algorithms are at the core of deep learning.
These algorithms search for the best possible parameters for
minimizing some defined loss function. Popular approaches
benefit from the gradient information calculated at some input
training example p. It is not possible to compute the gradient
of this example p if that point is a piece of text, a string.
Thus, text data must be converted to numbers. Representing
single words or whole paragraphs of text as real-valued
vectors has been a very popular research topic in recent years.
Each of these approaches usually involve a trade-off between
computational resources and semantic information preserved
in the representation space.

In this thesis, we consider a variety of existing text rep-
resentation algorithms for two reasons. First, it is unclear
which text representations are best performing for which
natural language processing tasks in general, but especially
for verification. Second, it is unclear which representation
algorithms and their corresponding latent space geometry best
suit the robustness verification problem. For instance, [7] have
observed that the bounded region to-be-verified can reduce
in volume if a different text representation algorithm, which
forces synonyms to be closer in the latent space, is used.
This approach increased verified accuracy and the amount of
verifiable samples.

Concretely, this thesis investigates DNN training using the
following text encoding approaches:

• GloVe [43]: this approach is similar to the original word
embedding approach, Word2Vec [44], in that it is an
unsupervised technique to generate word vectors. How-
ever, GloVe is a count-based model, whereas Word2Vec
performs predictive modelling.

• FastText [45]: extension of Word2Vec by treating a word
as a composition of character n-grams. FastText has two
advantages over GloVe: it is better at representing rare
words as well as out-of-vocabulary words.

• Doc2Vec [46]: by adding a separate document-unique
feature vector, Doc2Vec is able to provide a single vector
for a paragraph of text.

• InferSent [47]: first approach that learned sentence em-
beddings in a supervised manner. This work lead to an
increase in research on sentence encoders, and asked
the question ”which supervised task is best suited for
sentence represenation learning”.

• Universal Sentence Encoder (USE) [48]: this encoding
approach tried addressing the abovementioned question
by using multiple data sources and tasks to train a
transformer-based network which learns language nu-
ances in different contexts.

• DistilRoBERTa: recently, transformer [49] based models
have been dominating the field of NLP. In this thesis, we
consider a simplified RoBERTa [50] model trained on
paraphrases. The motivation is that perhaps this model
should generate sentence encodings in latent space which
has very similar sentences close together as it was trained
on paraphrasing data.

B. Robustness verification

The goal of neural network verification is to analyze
whether the model in question satisfies a given specification.
Here, we only consider the specification of robustness: For a
given data point, all nearby points within some distance ε are
predicted by the model to have the same label.

Let x, x′ ∈ X , where X denotes the input space set for a
network, let f(x) denote a predicted label by neural network
f for a point x. Then, formally, the global robustness property
is defined as follows:

∀x∀x′ : d(x, x′) ≤ ε, f(x) = f(x′),

where d is the Chebyshev distance. Chebyshev distance, also
called L∞ metric, is defined as follows: max(|xi−yi|), where
xi and yi are the standard coordinate values of vectors x and
y.

Using generic verification algorithms, it is essentially in-
tractable to computationally assess whether this property holds
for all points in the input space. This is due to the fact that the
input space can have very high dimension. Hence, it is useful
to define a weaker, local version of the robustness property. A
network is said to be ε-locally-robust if it satisfies

∀z∀x′ : d(z, x′) ≤ ε, f(z) = f(x′),

where z ∈ Z and Z is a compact subset of X . Ideally, Z
is large and representative enough to provide some meaning



Use        with some
reasonable perturbation

radius     to define an
input region to verify

CV model Verification tool

A set of data points  (correctly
classified by the model)

=

0
123

78

22
155

3
15
89

0

Data point
Counter-example
Perturbed region

122
42

255

Correct: "1"
Model: "8"

Fig. 2: Robustness verification process for networks performing classification on image data. Green circle is an adversarial
example found within the ε-radius of some input data point (in blue). It is also shown that for such data an adversarial example
can be easily mapped back to a concrete image. Handwritten digit images from [51].

about the network if the network is proven to be ε-locally-
robust.

Robustness verification for computer vision networks is said
to be more interpretable, as the perturbations have a clear
meaning (for example, changing the brightness of a pixel) [13].
Hence, we will introduce the practical robustness verification
procedure for computer vision first and discuss the problems
that arise for NLP following it. Figure 2 shows the practical
robustness verification procedure for NNs performing digit
classification on image data. A neural network to-be-verified,
and a set of data points, i.e. Z, from the test set is taken.
These data points must be correctly classified by the network.
Then, for each point z ∈ Z, a hyper-rectangle with radius
ε is crafted. In this context, this hyper-rectangle holds all
points with slightly increased or decreased pixel values by
at most ε from the original data point. A verification solver
is used to compute whether there exists a point in this hyper-
rectangle that has a different predicted label than the original
point. If the property holds, the result is UNSAT (solver
has not found a counter-example in the input region). If the
property is violated, the result it SAT and the solver usually
is able to retrieve a counter-example for which the network
misclassifies. This adversarial example can then be inspected
by a human to determine whether the network should have
known the label of this data point and, for example, it can
be placed into the training set, and the model retrained with
an augmented dataset. Alternatively, if the counter-example is
perturbed too much even for a human to correctly identify its
label, the perturbation radius could be decreased. Following

this procedure, we can develop networks that are ε-locally-
robust to adversarial perturbations.

If we follow the same procedure for networks performing
NLP tasks, there are 3 problems:

1) Text encoding methods like the ones mentioned in
Section III-A do not provide a way to map back to
discrete input space for a given vector, let alone for
a perturbed vector. If a counter-example is found by
the verification tools, we cannot directly inspect what
sentence it is and analyze the outcome.

2) Since text vectorization algorithms are opaque black-
boxes, the encoded text vectors are impossible to inter-
pret. Thus, perturbing the sentence vectors holds little to
no meaning, and it is unclear what it means for a NLP
network to be ε-locally-robust.

3) It is uncertain whether semantically similar sentences
are nearby to one another by Chebyshev distance.

Recent works avoided these problems by introducing per-
turbations like synonym replacement and character typos in
the discrete input space [6, 7] rather than in the latent space.
However, their approach was limited to some specific class
of perturbations and to the amount of perturbations applied
as there is an enormous amount of possible perturbations for
text.

This thesis attempts to interpret perturbations in the latent
space with hope that a network can be proven to be robust for
broader classes of perturbations. Thus, ideally, a bounded a
hyper-rectangle around a sentence vector would incorporate



other sentences with similar semantic meaning as seen in
Figure 1.

C. Denoising Adversarial Autoencoder

As mentioned in Section III-B, there are a few problems
with NLP system verification when applying perturbations to
latent vectors. The following Section presents a method which
can be used to address these issues.

Naively, Problem 1 could be tackled by a k-nearest neigh-
bour approach. However, the performance of this approach
highly depends on the size and variety of the dataset at hand.
An alternative and more fine-grained approach to retrieve text
from counter-examples in vector form is using an autoencoder
[52]. The task of an autoencoder is to reconstruct the input.
As a by-product, this neural network learns efficient data
representations in an unsupervised manner. Its architecture is
composed of two parts: Encoder and decoder. An encoder, over
a sequence of hidden layers, compresses the data into a hidden
representation and a decoder tries to reconstruct the input as
closely as possible from this compressed encoding. This model
is useful for NLP robustness verification - the encoder can be
used to represent text data in a numerical form and the decoder
part can be used to map back from counter-examples found
by verification tools to discrete texts. Note that the decoding
procedure is not perfect and is not guaranteed to give fully
correct inputs, but it is a step forward in interpreting NLP
verification.

[53] provide a solution to problem 3. In their paper, the
researchers observe that neural encoders do not necessarily
map similar sentences (both on a character-level and similar
semantically) to nearby vectors in the latent space. The authors
introduced a denoising objective to an adversarial autoencoder,
thus creating a denoising adversarial autoencoder. This denois-
ing procedure involves slightly perturbing the discrete input
and asking the autoencoder to recreate the input to the original.
DAAE is capable of mapping similar sentences in the discrete
input space to points in the latent space that are nearby each
other. DAAE latent space possesses interesting properties that
enable meaningful sentence interpolation by traversing the
latent space as well as to perform style transfer via latent
vector arithmetic. The well-behaved latent space created by
DAAE is intuitively useful for NLP robustness verification as
similar sentences are close together in the latent space. Our
expectation is that such well-behaved latent space allows us to
bound a hyper-rectangle that encompasses semantically similar
sentences as shown in Figure 1.

This thesis thus attempts to address problem 2 in Section
IV-D by empirically analyzing latent spaces created by differ-
ent text encoding methods.

D. Networks with linearly approximated activations

Most neural network verification tools support verification
of neural networks with PWL activation functions only. It is
claimed that this decision allows verification algorithms to be
complete, meaning they are guaranteed to always provide a
definitive answer (whether the property holds or not) to a

verification query. In fact, for simplicity, most tools support
ReLU = max(x, 0) function exclusively. However, state-of-
the-art DNNs use various smooth non-linear activation func-
tions like sigmoid or hyperbolic tangent. It is thus useful to
look into how linear approximations of smooth functions affect
the network performance and examine what the verification
benefits are.

To the best of our knowledge, [54] produced the only work
that investigated the impact of linearly approximated activation
functions on neural networks. Their paper focused on an image
classification task. For this work, we consider the automatic
function linearization approach presented in [54]. Let f : R→
R be a function over an interval [l, u], where l, u ∈ R, and
let n be the number of segments to approximate the function
with. The function is split into n equally sized sub-intervals
Ii. For each Ii, compute the slope mi and intercept bi. This
approach thus returns lists m and b for all n sub-intervals.
The first value of these lists corresponds to a linear segment
for x < l, similarly the last value of the lists corresponds to a
segment for x > u. Combining these lists yields a piece-wise
linear function:

m0 · x+ b0 if x < l

mi+1 · x+ bi+1,where i = b x−lstepc if l ≤ x ≤ u
mn+2 · x+ bn+2 if x > u

This linearization method was utilized to make a PyTorch
[55] activation module which takes in an arbitrary function
and approximates it linearly. The module can then be used for
training DNNs with PWL activations and the implementation
is provided in the supplementary code. Function linearization
applied to sigmoid and hyperbolic tangent functions can be
viewed in the Appendix, in Figure 10. Throughout this thesis
we refer to the function f(x) = 1

1+e−x as the sigmoid
function.

IV. EXPERIMENTS

A. Text data

For the experiments, neural networks were trained on the
IMDB movie review dataset [17]. Each review is labelled as
negative or positive. The dataset is comprised of 50k reviews.
The dataset is split by the authors of the dataset: 25k reviews
in the training set and 25k in the testing set, with no class
imbalance. In order to prevent information loss due to using
text encoding and to make training of DAAE more effective,
each review was split by sentence and the original review label
was assigned to each sentence. We note that this decision may
introduce some sentences in the dataset that do not have the
correct label. The test set was split in half to make a validation
set. The final datasets had 268k, 131k, 131k sentences for
training, validation, and testing sets respectively. The final
datasets contained roughly the same proportion of classes. No
further data pre-processing was applied other than tokenization
and making text lowercase.



B. Text vectorization

Before training DNNs, the data was vectorized as the
training time would have increased drastically and the data in
vector form was used for different experiments as well. The
sentences in training, validation, and test sets were encoded
into vectors using methods described in IV-A.
• GloVe: model trained on 2 billion tweets with 27 billion

tokens, producing 200-dimensional vectors was used.
The pre-trained model is provided by [43]. The en-
coding interface by [56] was utilized for convenient
text-vector conversion. GloVe provides embeddings for
singular words, and sentence representations are made
by averaging word embeddings appearing in a sentence.
When creating sentence representations, words that do
not appear in the vocabulary were skipped.

• FastText: model trained on wikipedia, IMBC, and
statmt.org news datasets, totalling 16 billion tokens.
Model produces 300-dimensional vectors and is provided
by [57]. The encoding interface by [56] was utilized for
convenient text-vector conversion.

• Doc2Vec: implementation provided by [56] was used and
the Doc2Vec model was trained on the IMDB dataset
described in Section IV-A. The model was trained to
provide 100-dimensional vectors.

• InferSent: the version 2 pre-trained model utilizing
FastText vectors internally was used and is provided
by [47]. InferSent model converts sentences into 4096-
dimensional vectors.

• USE: the version 4 pre-trained sentence encoder provided
by [48] through TensorFlow Hub was employed. The
model outputs 512-dimensional vectors.

• DistilRoBERTa: a pre-trained
paraphrase-distilroberta-base-v1 model
from https://www.sbert.net/index.html [58] was used.
The model provides 768-dimensional vectors and was
trained on a broad categories of data ranging from
wikipedia, AllNLI to question-answer data.

• DAAE: model implementation was accessed at
https://github.com/shentianxiao/text-autoencoders [53].
Then, it was trained using an Nvidia GeForce GTX
2080Ti with 11GB VRAM on the IMDB data mentioned
in Section IV-A. The training parameters are as
follows: trained for 25 epochs, 10 set as the weight for
adversarial loss, 0.3 as the probability for word drop,
30000 as the vocabulary size, output latent variables are
128-dimensional.

It is worth noting that GloVe and FastText produce variable-
sized outputs as a vector is produced for each word in
a sentence. Furthermore, some information is lost due to
averaging of word embeddings to create fixed-size sentence
representations.

C. Training Deep Neural Networks

Training procedure was implemented in PyTorch. All
trained networks had a feed-forward architecture with fully-

connected linear hidden layers after which a non-linear func-
tion was applied to the data. Networks were trained on pre-
vectorized data as described in Section IV-B. The same hyper-
parameters were used across all training experiments: total
number of epochs was set to 20, batch size of 1024 was
used, loss function was set to be cross-entropy, Adam [59]
was used as an optimizer with a constant learning rate of
0.1. If the network stopped learning, that is, the validation
loss did not decrease by 0.001 or more for three consecutive
epochs, then the training for the specific network configuration
was stopped early. Metrics such as training time, training and
validation loss, training and validation accuracy were saved for
each epoch. After a network was trained, its performance was
assessed on a test set and the confusion matrix was written to
file. DNNs were trained on a laptop with 8 GB RAM, Intel
Core i7-4720HQ CPU @ 2.60GHz and Nvidia GeForce GTX
950M GPU with 2 GB of VRAM, 640 CUDA cores.

A plethora of different neural network configurations were
trained in an attempt to answer research questions two and
three. Namely, the networks were trained on data encoded
using the seven methods described in Section III-A. To inves-
tigate the effect of network sizes for verification, 5 different
network sizes were chosen: 2 hidden layers with 10 hidden
nodes each, 5 hidden layers with 25 hidden nodes, 5 hidden
layers with 300 hidden nodes, 20 hidden layers with 25 hidden
nodes, and 20 hidden layers with 300 hidden nodes. Lastly,
five separate non-linear activation functions were used: ReLU,
hyperbolic tangent, PWL approximation of hyperbolic tangent,
sigmoid, PWL approximation of sigmoid. Hence, there were
7×5×5 = 175 networks trained in total. Various performance
metrics of these networks are reported in Tables XI-XVII in
the Appendix.

D. Latent spaces for NLP robustness verification

To start investigating verification, a subset Z of the test set
must be picked. The points in Z will be used to perform local
robustness verification. 50 examples from the test set were
chosen by the author of this thesis that were thought to have
a relatively unambiguous label.

1) Measuring the efficacy of robustness verification: Ro-
bustness verification deals with investigating whether points
within a hyper-rectangle with radius ε around an input point
are predicted to have a different label than the input point.
This chosen radius must not be too small as it might else be
the case that there are no points in the whole dataset that fall
within this hyper-rectangle. In that case, robustness could be
considered trivial and would bear no meaning for the network.

To test whether there exist points in the dataset that are
closer than ε radius, k-nearest neighbours (KNN) models were
trained. Seven separate KNN models for each text encoding
method were fitted using 100k (InferSent used 20k because
of memory issues) vectorized data points from the training
set. The proportion of verification sentences for which KNN
predicts there to exist at least one other sentence within
distance ε was computed. Two hundred equally spaced points
between 0.0001 and 3.0 were investigated. Figure 4 shows

https://www.sbert.net/index.html
https://github.com/shentianxiao/text-autoencoders


the results of this experiment. Additional way to assess the
size and density of a vector space is by computing nearest
neighbour distances. The KNN models described above were
utilized for this task. Table III shows the results of the average
distances and distribution of distances can be seen in Figure
14 in the Appendix.

Reasonable perturbation radius search can further be guided
by applying perturbations in the discrete input space and
computing the distance to the original vector. Three sentences
were picked with increasing difficulty:

• σ1 = ”i like movies”
• σ2 = ”watching the jaws was a quite terrifying experi-

ence”
• σ3 = ”john had to write to the right people to keep his

rights during his rites”

Text perturbations were applied using TextAttack [60].
Sentences were augmented by single character typos or re-
placing single words with WordNet synonyms. Each of the
approaches generated 20 sentences. These augmented sen-
tences were converted into vectors and Chebyshev distance
was computed to the original vector. Minimum and maximum
values of the distances are reported in Table I for character-
level perturbations and in Table II for synonym replacements.

2) Neighborhood preservation: [53] introduced a measure
of recall in order to quantify how well autoencoders preserve
sentence space neighborhood structure in the latent space. In
other words, whether sentences similar in the discrete input
space are nearby each other in the latent space. The authors
computed nearest neighbours of sentences in the text space
by utilizing normalized edit distance which is Levenshtein
distance of two sentences divided by the max length of two
sentences. They also computed nearest neighbours of the
sentences based on Euclidean distance in the latent space.
Thus, the recall rate is defined as

|NNx ∩ NNz|
|NNx|

,

where, for some sentence, NNx is the set of nearest neighbours
in the text space and NNz is the set of nearest neighbours in
the latent space. This can be evaluated for different values
of k neighbours. [53] fixed |NNx| = 10 and authors varied
k to allow for neighbours that are further away in the latent
space. In this thesis, recall rate is computed for different text
encoding methods including DAAE and is shown in Figure
3. Nearest neighbours in the latent space are computed using
Chebyshev distance instead of Euclidean.

Autoencoders can help interpret the output of verification
tools for NLP networks by mapping arbitrary vectors to text.
However, they are not guaranteed to reconstruct the input
perfectly. Tables VIII and VII in the Appendix supports this
notion by showing performance capabilities of DAAE. The
network on which the solver ran with perturbation radius 1.31
has 5 hidden layers, 25 hidden nodes per layer and ReLU
activation functions.

E. Robustness verification for sentiment classification

The experiments outlined below were carried out using
NeuralVerification.jl verification framework written
in Julia. The library is very accessible: It has extensive docu-
mentation and tutorials online. It further implements ways to
verify safety and robustness of feed-forward neural networks.
A plethora of verification approaches are implemented in
NeuralVerification.jl including complete methods;
support for smooth activation functions is also present. The
experiments were carried out on the same laptop described in
Section IV-C.

The first set of experiments for verifying robustness con-
cerned verifying FFNNs with ReLU activation functions.
Before verification, the model classified 50 sentences of set
Z. The ones that have been correctly classified were used for
verification. A property-to-be-verified in this context means
picking some sentence vector, crafting a hyper-rectangle by
adding and subtracting ε to each value in the vector and
checking if all points within this hyper-rectangle have the
same output label as the original sentence vector. DLV [32]
was chosen as a solver as some preliminary experiments have
proven it to be rather fast. A timeout of 10 seconds was
imposed for each property. Figure 6 shows the proportion of
verification outcomes for varying ε perturbation radii. Since
from this plot it is unclear why some properties do not hold,
we investigated five specific epsilon radii with a larger timeout
of 200 seconds. Results are reported in figures 8 and 9 for
DistilRoBERTa and DAAE encodings respectively as well as
for three activation functions: ReLU, Sigmoid, and linearized
Sigmoid.

Subsequent experiments investigated the performance of
verification for ReLU networks for all five NN sizes. Pertur-
bation radius was fixed to 0.0002, and timeout of 10 seconds
was imposed per property. Results are depicted in Figure 5
for DAAE encoding. For results using other encodings, please
refer to the Appendix.

V. RESULTS AND DISCUSSION

A. Analysis of latent spaces for NLP verification

Encoding σ1 σ2 σ3
min max min max min max

GloVe 0.286 2.179 0.138 0.648 0.048 0.390
FastText 0.059 0.222 0.013 0.035 0.009 0.022
Doc2Vec 0.038 0.109 0.033 0.068 0.041 0.125

USE 0.086 0.168 0.045 0.136 0.040 0.114
InferSent 0.000 0.000 0.000 0.000 0.000 0.147

DistilRoBERTa 0.522 1.627 0.326 0.903 0.241 0.924
DAAE 0.510 1.347 0.143 0.764 0.089 1.080

TABLE I: Chebyshev distance of 20 vectors with a single
character perturbation in the discrete input space from orig-
inal sentence vector. Results reported for different encoding
methods and three sentences with increasing difficulty.

Figure 3 shows how well different text representation meth-
ods map similar sentences to similar latent representations by



Fig. 3: Recall rate of different text encoding methods on
the IMDB dataset. This measure quantifies how well text
similarity based on Levenshtein distance is preserved in the
latent space based on Chebyshev distance.

Encoding σ1 σ2 σ3
min max min max min max

GloVe 0.272 2.054 0.166 0.714 0.060 0.410
FastText 0.044 0.084 0.011 0.037 0.008 0.042
Doc2Vec 0.042 0.094 0.040 0.010 0.044 0.092

USE 0.101 0.193 0.055 0.147 0.029 0.095
InferSent 0.000 0.000 0.000 0.159 0.000 0.181

DistilRoBERTa 0.376 1.286 0.352 1.546 0.129 0.832
DAAE 0.348 0.973 0.111 0.840 0.037 0.277

TABLE II: Chebyshev distance of 20 vectors with a single
WordNet synonym perturbation in the discrete input space
from original sentence vector. Results reported for different
encoding methods and three sentences with increasing diffi-
culty.

Encoding Avg. nearest
neighbour distance

GloVe 0.21442
FastText 0.03604
Doc2Vec 0.07285

USE 0.11428
InferSent 4.322156e-08

DistilRoBERTa 0.751579
DAAE 0.62981

TABLE III: Average Chebyshev distance of 10k points from
the training set to their nearest neighbour.

Chebyshev distance. It is expected that Doc2Vec performs
poorly - the model was trained by authors of this thesis
from scratch without extensive hyper-parameter search. As
hypothesized, DAAE maintains the best recall rate amongst
all other text encoding methods. These findings provide hope
that DAAE, at the very least, is better at mapping similar texts
on a character-level nearby each other in the latent space than
other methods.

In order to start verification procedure, we needed to choose
a suitable size for the hyper-rectangle. First, it is important

to take a radius that incorporates at least one other point
in the dataset as otherwise we cannot say that the network
is robust against any other data points. Second, it is well-
known that vector spaces induced by separate text represen-
tation techniques will have distinct properties as the training
procedure is different and tries to capture unique linguistic
nuances. Figure 4 shows what is the minimum distance needed
to incorporate at least one data point for all 50 verification
sentences. Both FastText and USE seem to incorporate at least
one other data point for a relatively small radius. Sentences
encoded by DistilRoBERTa and DAAE are more dispersed in
the latent space - a larger radius is needed to reach at least
one other data point.

Tables I and II show how slight perturbations in the discrete
input space affect the resulting vectors in the latent spaces. The
distance for each perturbed sentence to the original vector
was computed. The reported minimum distance means that
one should verify a network using that encoding with at
least that large of a bound, as smaller distances would not
hold any meaning. Similarly, the maximum value hints to
a radius of a hyper-rectangle which could bound sentences
perturbed in this manner. Interestingly, there seems to be no
consensus over the values: Shorter, ”easier” sentences have
larger distance values and longer, ”more difficult” sentences
have smaller values. Perhaps this is of no surprise as the longer
the sentence, the less its meaning is impacted by one-symbol
substitutions. From the tables it is also evident that the distance
depends on the number of dimensions of the vector space and
how well-spaced the points are. For instance, DistilRoBERTa
has 768 dimensions yet has values similar to DAAE which
has 128 dimensions. USE also has relatively high number of
dimensions but the vector space seems much more dense, the
points are closer together. An extreme case of the latter is
InferSent which has extremely small distances between points
but also has 4096 dimensions - more than any other method by
far. Possibly, for verification, the radius of the hyper-rectangle
should be adjusted on the length of the sentence and number of
dimensions. In addition, the verification input region does not
need to be a hyper-rectangle. It could be a hyper-polytope and
could bound an input point more tightly and more precisely
for some class of perturbations in the discrete space. In this
thesis, however, we do not investigate these possibilities and
rely mainly on the values discovered in Figures 4 all the more
so that the values discovered there incorporate most of the
values seen in Tables I and II. Table III offers further insight
into the scale of the vector space and portrays results similar
to Tables I and II.

B. Robustness verification for NLP deep neural networks

Figure 5 portrays the verification outcomes and the cu-
mulative time it took to verify them for ReLU networks
with different sizes. The Figure points to an obvious fact:
Network sizes affect the effectiveness of verification. The
biggest network constantly takes order of magnitude longer
than the smaller networks. In particular, it seems that the
number nodes in the network seem to affect the speed of



(a) FastText encoding (b) USE encoding

(c) DistilRoBERTa encoding (d) DAAE encoding

Fig. 4: Plots showing the proportion of 50 cherry-picked verification data points that have at least one data point from the
training set with at most specified Chebyshev distance away from them. The red dotted line shows the maximum of minimum
distances needed to reach at least one other data point appearing in the training set for each of the verification sentences.

verification. This is deduced because a shallower, 5 layer
network takes longer to verify all its properties than a deeper
20-layer network. The first DNN has 1500 nodes, and the
second one only 500 nodes.

Figure 6 shows the proportion of properties and their
outcomes found by DLV solver for increasing radii of input
hyper-rectangle. The results are presented for networks of the
same size. The hope is that the network properties would
hold for (nearly) all values. Based on the latent space analysis
made earlier, one could then say that the network is robust to
adversarial attacks at least for character and synonym replace-
ments. Unfortunately, all networks other than DAAE fail to
verify properties quite early on. To compare these results, we
can compute the percentage of radii covered until the solver
can no longer prove any properties to hold, in other words,
when the proportion of properties which hold hits 0. Results
are as follows: FastText: 2.5%, USE: 5.0%, DistilRoBERTa:
8.54%, DAAE: 83.9%. DAAE networks seem to possess
favourable properties for robustness. It is both possible to
verify robustness for larger radii and the networks seem to be
more robust for larger radii than e.g. DistilRoBERTa networks.

The latter can be deduced from the fact that properties are
being violated for larger radii. One could say that it is possible
to efficiently verify DAAE because of its small dimension size
- 128. However, FastText has 300-dimensional vectors and
starts timing out quicker than USE and DistilRoBERTA which
have 512 and 768 dimensions respectively. It is unclear how
truly robust FastText and USE networks are, but, in general,
we report that it takes much longer to arrive at a conclusion
using the DLV solver.

Table IV demonstrates the nearest neighbours for a specific
sentence as well as for its counter-example found by Reluplex.
According to qualitative inspection, KNN is a good approach
to interpreting NLP verification results. One notable downside
is that the nearest neighbours of the counter-examples could
exceed the perturbation radius as is the case for USE and
DistilRoBERTa encodings in Table IV. KNN performance
highly depends on the data it has been trained on. Memory
resources available to us only permitted fitting KNNs on 100k
data points even though over 500k were available in total for
IMDB dataset. Naturally, this approach does not create new
samples for which the DNN in-question misclassifies. The



Input: the plot is ridiculous and the
characters are horrible people . .

Text δo

GloVe

when something happens , the reactions of the
characters are vague and dry.best not to look
this one up .

0.231

USE

the characters are awful , as is the story . 0.089

DistilRoBERTa

the plot is ridiculous and the whole
“ little man ” crap is just so stupid . 0.590

DAAE

the acting is first class and the
characters are represented well . 0.629

(a) Nearest neighbour for a specific example.

Input: the plot is ridiculous and the
characters are horrible people . .

Text δc δo

GloVe, radius = 0.05

the script is bad , the zombies are awful , there
is no tension , lines are bad , actors are bad ..
the list just goes on.you will probably
want to see this movie just because of
its reputation of being awful .

0.252 0.296

USE, radius = 0.014

the plot and characters are ridiculous and
barely qualify as ” plot ” and ” character ” . 0.100 0.103

DistilRoBERTa, radius = 0.164

the characters are shallow and trite as are
the dialog and plot line . 0.703 0.867

DAAE, radius = 1.31

the acting is first class and the characters
are represented well . 1.939 0.629

(b) Nearest neighbour of a counter-example found by
Reluplex for a specific sentence. δc is the Chebyshev
distance to the counter-example.

TABLE IV: Nearest neighbours for different encodings. δo is the Chebyshev distance to the original point.

Fig. 5: Verification results of DLV solver for different sizes of
ReLU networks for DAAE encoding. Input hyper-rectangle
radius set to 0.0002. Timeout of 10 seconds per property
imposed. The format of x y z in the legend corresponds to
the following properties of NNs: x - number of layers, y -
number of nodes per layer, z - number of examples correctly
classified out of the 50 cherry-picked sentences.

nearest neighbours for GloVe, USE, and DistilRoBERTa seem
to show legitimate counter-examples - the network should
classify these sentences as negative but it classified a close
point as positive. For DAAE, however, the counter-example is
unreasonable as the sentiment is clearly positive.

An autoencoder is a fine-grained approach of interpreting

Original the plot is ridiculous and the
characters are horrible people .

Original reconstruction the plot is not very good
Counter-example reconstruction the film is a very good film .

TABLE V: Reconstruction performed by DAAE of a sentence
and its counter-example found by Reluplex for radius 1.31.

verification results and one which generates new samples.
Table V shows the reconstructions using DAAE for the
same sentence as in Table IV and its counter-example. The
reconstruction of the original is quite similar to the first
sentence albeit shorter. The reconstruction of the counter-
example seems to point to the same conclusion arrived for
DAAE using nearest neighbours, meaning that the perturbation
radius of 1.31 is too wide for DAAE networks. This conclusion
is to be taken with caution as other decision in the pipeline
could have influenced this such as the reconstructive abilities
of DAAE or the performance of the DAAE network. In
general, further research is needed on network performance
and optimal parameter configuration for DAAE.

C. Piece-wise linear activation function trade-offs for neural
networks

Table VI shows some performance measures of networks
trained on various encodings and a fixed network size. For
three out of four shown encoding methods, sigmoid activation
function seems to provide strong results. Networks trained on
DAAE encodings did not seem to perform well regardless of
the activation. Increase in average training time per epoch for
PWL activations is consistent, but minor: No more than one



(a) FastText encoding (b) USE encoding

(c) DistilRoBERTa encoding (d) DAAE encoding

Fig. 6: Proportion of properties that are proven to hold by DLV [32] as the radius of the input hyper-rectangle is increased.
Proportion calculated for 200 points between 0.0001 and minimum distance that incorporates at least one other point in the
bounded hyper-rectangle as shown in Figure 4. Time out of 10 seconds imposed per property.

Activation Train
accuracy

Test
accuracy

Avg. train time
per epoch (s)

Tanh 50.13 51.17 38.54
PWL Tanh 50.29 51.17 38.98
Sigmoid 68.68 67.36 38.93
PWL Sigmoid 50.72 51.17 40.05
ReLU 67.37 67.07 39.15

(a) FastText encoding

Activation Train
accuracy

Test
accuracy

Avg. train time
per epoch (s)

Tanh 66.96 67.44 61.75
PWL Tanh 68.01 67.91 62.42
Sigmoid 70.52 68.86 62.44
PWL Sigmoid 50.71 48.83 62.98
ReLU 70.30 69.13 62.4

(b) USE encoding

Activation Train
accuracy

Test
accuracy

Avg. train time
per epoch (s)

Tanh 67.64 61.37 92.21
PWL Tanh 66.62 67.09 92.74
Sigmoid 69.76 68.80 92.34
PWL Sigmoid 50.62 48.83 93.22
ReLU 67.60 65.32 92.19

(c) DistilRoBERTa encoding

Activation Train
accuracy

Test
accuracy

Avg. train time
per epoch (s)

Tanh 50.16 48.83 17.70
PWL Tanh 50.16 48.83 18.71
Sigmoid 50.68 51.17 18.64
PWL Sigmoid 50.67 51.17 18.72
ReLU 50.69 51.17 17.94

(d) DAAE encoding

TABLE VI: Metrics for networks trained using different encoding methods and different activation functions. Network is
feedforward with 5 hidden layers and 25 hidden nodes per layer.

second increase compared to their smooth versions. Previously,
[54] have shown that the training time of DNNs trained using
linearized activation functions approximated with three line
segments was increased 2-3 times compared to the smooth
variants. Researchers used MNIST [51] as data and the Keras
training framework. Our findings bring to light the fact that
FFNNs with PWL functions can be used for training networks

using PyTorch with only a minor increase in training time.
Boxplots of test accuracies grouped by five activation func-

tions can be seen Figure 7. It is evident that, on average,
networks trained on PWL sigmoid are performing worse than
with other activations. Linearzed tanh, however, performs
better than its continuous counterpart. Another PWL function,
ReLU, demonstrates good results consistently while continu-



Fig. 7: Boxplots of test accuracies, grouped by activation func-
tions. Only encodings of GloVe, FastText, Doc2Vec, USE, and
DistilRoBERTa, and sizes of 2 hidden layers with 10 nodes-
per-layer, 5 layers with 25 nodes-per-layer were considered.
This is because other network configurations performed very
poorly regardless of the activation. Box and whiskers plot
computed using definition found in [61].

ous sigmoid shows the best results overall.
While the results presented seem to show that networks

with linearized activation functions achieve comparable perfor-
mance to their smooth versions, it is unclear how consistent
such results are, especially for different DNN architectures.
Tables in the Appendix show performance of networks for both
deeper and wider networks. Further experiments employing a
thorough hyper-parameter search could uncover more concrete
trade-off between linearized and smooth activations still.

Figures 8 and 9 exhibit the effect of different activation
functions for robustness verification. There seems to be no
effect for DAAE networks, all properties are proven to hold
by MaxSens [20] solver until perturbation of radius 1, when
it times out. However, both sigmoid and linearized sigmoid
seem to affect the outcome of verification for radius of 0.01.
The proportion of properties verified to hold is around 50%
for both sigmoid and PWL sigmoid DNNs while it is 100%
for ReLU network. Thus, the choice of activation functions
for DNNs can affect how robust it is.

VI. CONCLUSION

This thesis examined existing verification approaches of
neural networks for natural language processing. The perfor-
mance of verification tools was shown to be impacted by input
size, network size, and especially by input hyper-rectangle
radius. PWL DNNs seem to have miniscule downsides in
training time but are less likely to perform as well as their
smooth counterparts. Networks trained using popular text
encoding methods like word embeddings or sentence encoders
in an ad-hoc manner were demonstrated to be inappropriate for
providing good robustness guarantees. Prior work introduced
an autoencoder with a modified loss function which has a well-
behaved latent space geometry. The finding was leveraged to

show, in turn, that networks trained on such encodings are
better suitable for robustness verification. Lastly, the latent
spaces, reasonable perturbation radius options, and verification
result interpretation approaches were investigated. We con-
clude that nearest neighbour approach is good for interpreting
and guiding perturbation radius search but autoencoders can
be leveraged for generating semantically similar samples for
which the network is not robust against.

VII. FUTURE WORK

Considering this thesis stressed the importance of latent
space properties and how it helps with robustness verification,
future work could further investigate interpretation of verifica-
tion results and come up with latent spaces that better fit NLP
verification but still keep the models rather strong.

Additional work on convolutional neural networks as well as
recurrent neural networks could be carried out as verification
tools that are capable of handling these types of networks exist
(even if limited). Different properties can still be investigated
involving downstream tasks or relationship between two net-
works, for example.

Furthermore, it would be interesting to see the impact of
network simplification as well as adversarial training methods
on NLP DNN verification.
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APPENDIX

Input: this is a very good show .
Vector
value Reconstructed text

v this movie is a very good movie .
v − 1.31 i was really really really really good movie .
v − 1.17 i was not sure , i was not that .
v − 1.03 i was not sure , i was a fan of this movie .
v − 0.9 i was not a fan of this movie .
v − 0.76 i was not a fan of this movie .
v − 0.62 this movie is a very good movie .
v − 0.48 this movie is a very good movie .
v − 0.34 this movie is a very good movie .
v − 0.21 this movie is a very good movie .
v − 0.07 this movie is a very good movie .
v + 0.07 this movie is a very good movie .
v + 0.21 this movie is a very good movie .
v + 0.34 this movie is a very good movie .
v + 0.48 this is a very good movie .
v + 0.62 this is a very good movie .
v + 0.76 this is a very good movie .
v + 0.9 this is a very good movie .
v + 1.03 this is a movie .
v + 1.17 this is a movie .
v + 1.31 this is a movie .

TABLE VII: Reconstructed text by DAAE for different vector
values. Original vector value is v and 20 points were created
by element-wise addition of a constant. The constants were
chosen based on Figure 4.

(a) Sigmoid

(b) Hyperbolic tangent

Fig. 10: PWL approximation of functions with 10 line seg-
ments over the interval [−5, 5]. Values of x outside the
specified interval are equal to the last encountered f(x) = y
value.

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1412.6980


Original Original reconstruction Counter-example reconstruction

rented the video with a lot of expectations ,
but it was a disappointment . the movie was a good movie . the movie was a good movie .

this was essentially made for tv and it shows . this movie is not a waste of time . this is a very good film with a lot of the film .
not sure if this is just a lousy movie or
if it was intended to be a mockery of a “ b ”
western .

i was not a fan of this film . the movie is a very good movie ,
but it ’s a lot of the <unk> .

i cant believe how bad it was.i give this movie
a 2 out of 10 . i was not sure that i was a fan of this movie . the movie was n’t a lot of

the movie i ’ve seen it .
the movie has some points , but ,
if you want to make it a worthwhile movie , i
suggest that you become what the main characters
are called ... stoners.2/10!

the movie is a very good film the movie was a very good movie , but it ’s
not a lot of the worst movie ever made .

god , i never felt so insulted in my whole life
than with this crap . i ’m not sure that i was not a fan of this film .

the only thing that the movie
was a bit of the <unk> , but
the story is a very good movie .

i rather watch carrot top do a george bush
impression than watch this no-skill hack . i am not sure that the movie was a good movie . the movie was a bit of the <unk>

and the <unk> of the film .
it commits the mortal sin of being boring and
not fun in the slightest . it ’s not even more like the film . the story is a good film ,

but the story is a good film .
the plot is ridiculous and the characters are
horrible people . the plot is not very good . the film is a very good film .

throughout the film i ca n’t seem to find
a connection or for that matter , sympathy
with the characters , perhaps thats
because they do n’t develop one throughout the
film , character that is .

the movie is n’t that bad . the movie is a very good film , but it ’s
not a lot of the <unk> .

TABLE VIII: Reconstructions performed by DAAE of 10 sentences and their counter-examples found by Reluplex.



(a) GloVe encoding (b) Doc2Vec encoding

(c) InferSent encoding

Fig. 11: Plots showing the proportion of 50 cherry-picked verification data points that have at least one data point from the
training set with at most specified Chebyshev distance away from them. The red dotted line shows the maximum of minimum
distances needed to reach at least one other data point appearing in the training set for each of the verification sentences.



(a) GloVe encoding (b) Doc2Vec encoding

(c) InferSent encoding

Fig. 12: Proportion of properties and their outcomes found by DLV [32] as the radius of the input hyper-rectangle is increased.
Proportion calculated for 200 points between 0.0001 and minimum distance that incorporates at least one other point in the
bounded hyper-rectangle as shown in Figure 4. Time out of 10 seconds imposed per property.



(a) GloVe encoding (b) FastText encoding

(c) Doc2Vec encoding (d) USE encoding

(e) InferSent encoding (f) DistilRoBERTa encoding

Fig. 13: Verification results of DLV solver for different sizes of ReLU networks. Input hyper-rectangle radius set to 0.0002.
Timeout of 10 seconds per property imposed. The format of x y z in the legend corresponds to the following properties
of NNs: x - number of layers, y - number of nodes per layer, z - number of examples correctly classified out of the 50
cherry-picked sentences.



(a) GloVe encoding (b) FastText encoding

(c) Doc2Vec encoding (d) InferSent encoding

(e) USE encoding (f) DistilRoBERTa encoding

(g) DAAE encoding

Fig. 14: Histograms of nearest neighbour distances for 10k points from the training dataset. Distances were retrieved by training
a k-NN algorithm for 100k points from the training set, except for InferSent, which was trained on 20k points.



Input: the plot is ridiculous and the characters are horrible people .
Text δo

GloVe

when something happens , the reactions of the characters are vague and dry.best not to look this one up . 0.231
not only is the plot involving and the characters fascinatingly drawn , but the setting is absolutely out of this world ! 0.243
the plot twists are top-notch , and one of the other great twists in this movie is that some of the supporting characters
actually act as if they have brains . 0.245

what little there is , is atrocious to begin with , and made much worse by the terrible
video and editing.the worst part of this atrocity , though , apart from the plot , would have to be
the effects ... or rather the disturbing lack thereof .

0.249

the story is silly ( even for a fantasy ) , the kids are terrible actors and one of them ( charles ) is incredibly obnoxious . 0.252

FastText

the movie is boring , the characters and scenarios are unrealistic , unbelievable , the action is hilarious . 0.030
the problem with the realism is that the characters are so patently unrealistic and atypical - contrary
to the fetid imaginings of “ extreme ” filmmakers most teenagers are not drug addled rapists . 0.033

the rescue scenes are great - even if the computer generation is hokey and the scenarios are pretty
unreal - but the backstory is lame and disappointing . 0.033

most of he supporting performances are hilariously amateurish , the cinematography is terrible and the locations
and sceneries are beneath contempt . 0.034

the actors are reduced to macho posturing , the plot rings false , the action sequences are soulless and suspenseless ,
the dialogue is absurd even the violence becomes numbingly predictable . 0.034

Doc2Vec

people do n’t act like this . 0.036
cats jumping on people . 0.042
mumbling and people wandering wistfully . . 0.042
stop ! 0.044
hardly . 0.044

USE

the characters are awful , as is the story . . 0.089
the characters are uniformly unpleasant , and plot makes no sense . 0.093
the actors are not that bad , but their characters are rather dumb and the story is boring and downright stupid . 0.096
the acting is horrible , the plot ( what plot ) is stupid and degrading and insane . . 0.099
the plot and characters are ridiculous and barely qualify as “ plot ” and “ character ” . 0.103

InferSent

two hundred years later , insomnia returns , dawn is reincarnated as enigma , and insomnia has returned to destroy zu . 0.000
the acting was so bad that i was hoping that one and all would be buried at the end . 0.000
there is no action , no suspense , not even a spark between the 2 leading actors . 0.000
this movie could have been titled “ beverly hills cop and the temple of doom ” since parts of this movie plays like a
spielbergian adventure , kinda like an indiana jones comedy . 0.000
the characters were not developed well . 0.000

DistilRoBERTa

the plot is ridiculous and the whole “ little man ” crap is just so stupid . 0.590
the plot is extremely ridiculous ; the characters are insufferably dumb , the gore-factor is negligible and the whole thing
is just plain boring ! 0.612
the plot is ridiculous , the characters poorly developed , and the premise irritatingly stupid . 0.650
also , this was a shallow movie with weak acting , a predictable plot line and characters who are less than memorable. 0.665
the reason that this is so terrible is not because it deviated from the formula , but because the plot was just pathetic ? 0.674

DAAE

the acting is first class and the characters are represented well . 0.629
the dancing is perfect , and so are the special effects . 0.771
the humor was weak and the characters fairly flat . 0.807
the other char-s are very nice also . 0.875
the characters are awful , as is the story . 0.877

TABLE IX: 5 nearest neighbours of a specific sentence. δo is the Chebyshev distance to the original point.



Input: the plot is ridiculous and the characters are horrible people .
Text δc δo

GloVe, radius = 0.05

the script is bad , the zombies are awful , there is no tension , lines are bad , actors are bad .. the list
just goes on.you will probably want to see this movie just because of its reputation of being awful . 0.252 0.296

and the worst part is that all the above mentioned statements are true ! ! ! 0.257 0.298
the only thing that is good in this horrible mess are the excerpts of the jerry goldsmith score of bi1 . 0.261 0.295
what makes this idea fail is that right in the middle of some great 80 ’s duran duran songs , confusing and
annoying cut scenes take place showing the fictional antagonist trying to stop the band at one of their concerts . 0.261 0.311

the jokes are lame as ... and the plot is ridiculous . 0.262 0.291

FastText, radius = 0.004

the movie is boring , the characters and scenarios are unrealistic , unbelievable , the action is hilarious . 0.030 0.032
the actors are reduced to macho posturing , the plot rings false , the action sequences are soulless and
suspenseless , the dialogue is absurd even the violence becomes numbingly predictable . 0.032 0.034

the creature is ludicrous and its victims are simply despicable . 0.033 0.037
is it the acting , or the script that is bad , or both ? the protagonist is also highly unbelievable
for social realism - ravenously consuming canonical english literature and the bible while
high or hungover and able to produce such profoundly sophomoric soliloquies while intoxicated ?

0.035 0.039

yes , the storyline has potential but the dialogs are flat , the actors unconvincing . 0.036 0.035

Doc2Vec, radius = 0.018

people do n’t act like this . 0.050 0.036
mumbling and people wandering wistfully . 0.051 0.042
the actors are incredible and the documentary style is superb . 0.051 0.065
and 3 ) people should n’t like pokemon . 0.052 0.059
all the good guys are african americans . 0.053 0.053

USE, radius = 0.014

the plot and characters are ridiculous and barely qualify as ” plot ” and ” character ” . 0.100 0.103
the characters are awful , as is the story . 0.100 0.089
the acting is horrible , the plot ( what plot ) is stupid and degrading and insane . 0.107 0.099
the characters are uniformly unpleasant , and plot makes no sense . 0.107 0.093
the actors are not that bad , but their characters are rather dumb and the story is boring and downright stupid . 0.108 0.096

DistilRoBERTa, radius = 0.164

the characters are shallow and trite as are the dialog and plot line . 0.703 0.867
the plot is unbelievable . 0.727 0.722
the plot is totally cool , and the characters are excellently written . 0.744 0.813
the plot is ridiculous and the whole “ little man ” crap is just so stupid . 0.744 0.590
do you like when a plot contains unrealistic choices by the characters and is boring and lacks any kind
of tension .. ? 0.765 0.881

DAAE, radius = 1.31

the acting is first class and the characters are represented well . 1.939 0.629
the actors were n’t bad , but the plot needs more innovation . 1.989 0.970
the colors and backgrounds were just as bad as the effects . 2.001 1.238
the entire cast is wonderful and all the episopes have good plots . 2.002 1.123
the comedy is n’t funny and the tragedy is n’t very tragic . 2.022 0.949

TABLE X: 5 nearest neighbours retrieved for the counter-example found by Reluplex. δc is the Chebyshev distance to the
counter-example and δo is the Chebyshev distance to the original point for which the counter-example was found.



Activation Size Train
accuracy

Test
accuracy

F1
score

Avg. train time
per epoch (s)

ReLU 2 10 66.14 65.01 68.34 40.98
Tanh 2 10 66.67 65.32 68.08 41.06
PWL Tanh 2 10 66.01 64.35 68.98 41.05
Sigmoid 2 10 66.81 65.14 68.69 40.99
PWL Sigmoid 2 10 66.84 65.24 68.38 41.06
ReLU 5 25 66.46 66.12 67.5 41.22
Tanh 5 25 51.61 51.16 0.64 41.23
PWL Tanh 5 25 50.62 51.2 0.44 42.06
Sigmoid 5 25 50.93 48.83 65.62 41.22
PWL Sigmoid 5 25 50.98 48.83 65.62 41.91
ReLU 5 300 51.1 51.18 0.08 45.15
Tanh 5 300 50.72 51.34 1.5 44.03
PWL Tanh 5 300 49.98 51.15 0.14 47.33
Sigmoid 5 300 50.17 51.17 nan 47.28
PWL Sigmoid 5 300 49.94 51.17 nan 48.39
ReLU 20 25 50.9 48.83 65.62 42.56
Tanh 20 25 50.25 51.15 0.06 42.96
PWL Tanh 20 25 50.29 51.15 0.08 46.11
Sigmoid 20 25 50.92 48.83 65.62 42.83
PWL Sigmoid 20 25 50.99 48.83 65.62 46.05
ReLU 20 300 50.53 48.83 65.62 59.91
Tanh 20 300 50.16 51.17 nan 58.97
PWL Tanh 20 300 50.18 48.91 65.61 77.04
Sigmoid 20 300 50.12 51.17 nan 69.71
PWL Sigmoid 20 300 50.18 51.17 nan 82.75

TABLE XI: Metrics of deep neural networks trained on GloVe
encodings

Activation Size Train
accuracy

Test
accuracy

F1
score

Avg. train time
per epoch (s)

ReLU 2 10 67.56 67.5 67.24 38.89
Tanh 2 10 68.66 67.89 69.01 39.03
PWL Tanh 2 10 68.0 67.56 69.04 38.12
Sigmoid 2 10 68.72 67.79 68.63 39.02
PWL Sigmoid 2 10 67.88 66.75 69.14 39.02
ReLU 5 25 67.37 67.07 67.66 39.15
Tanh 5 25 50.13 51.17 nan 38.54
PWL Tanh 5 25 50.29 51.17 nan 38.98
Sigmoid 5 25 68.68 67.36 69.26 38.93
PWL Sigmoid 5 25 50.72 51.17 nan 40.05
ReLU 5 300 51.06 51.17 nan 43.54
Tanh 5 300 49.99 51.17 0.01 42.23
PWL Tanh 5 300 50.02 51.17 nan 45.33
Sigmoid 5 300 50.09 51.17 nan 43.84
PWL Sigmoid 5 300 50.06 51.17 nan 46.87
ReLU 20 25 50.65 51.17 nan 40.15
Tanh 20 25 50.09 51.17 nan 40.96
PWL Tanh 20 25 50.15 51.17 0.0 44.53
Sigmoid 20 25 50.72 51.17 nan 40.57
PWL Sigmoid 20 25 50.72 51.17 nan 43.79
ReLU 20 300 50.38 48.83 65.62 60.69
Tanh 20 300 50.16 48.83 65.62 55.98
PWL Tanh 20 300 50.15 48.83 65.62 75.69
Sigmoid 20 300 50.0 51.17 nan 123.61
PWL Sigmoid 20 300 50.07 51.17 nan 83.89

TABLE XII: Metrics of deep neural networks trained on
FastText encodings

Activation Size Train
accuracy

Test
accuracy

F1
score

Avg. train time
per epoch (s)

ReLU 2 10 64.14 62.68 63.9 21.8
Tanh 2 10 64.17 62.71 62.85 21.99
PWL Tanh 2 10 64.03 62.86 62.71 22.13
Sigmoid 2 10 64.49 62.89 63.57 21.8
PWL Sigmoid 2 10 64.59 62.83 63.74 21.94
ReLU 5 25 64.27 62.97 59.39 22.17
Tanh 5 25 50.14 48.84 65.6 22.21
PWL Tanh 5 25 59.17 60.47 57.81 22.87
Sigmoid 5 25 50.59 51.17 nan 22.14
PWL Sigmoid 5 25 50.62 51.17 nan 22.84
ReLU 5 300 54.25 51.17 0.01 25.34
Tanh 5 300 50.05 48.83 65.62 25.05
PWL Tanh 5 300 50.15 50.85 58.88 28.33
Sigmoid 5 300 49.87 48.83 65.62 35.44
PWL Sigmoid 5 300 49.98 48.83 65.62 28.77
ReLU 20 25 50.75 51.17 nan 23.53
Tanh 20 25 50.16 51.17 nan 23.86
PWL Tanh 20 25 50.17 51.19 0.4 26.98
Sigmoid 20 25 50.71 51.17 nan 23.73
PWL Sigmoid 20 25 50.62 51.17 nan 27.09
ReLU 20 300 50.42 51.17 nan 41.42
Tanh 20 300 50.11 50.93 10.28 39.05
PWL Tanh 20 300 49.99 48.83 65.62 58.41
Sigmoid 20 300 49.93 48.83 65.62 51.22
PWL Sigmoid 20 300 49.87 48.83 65.62 64.79

TABLE XIII: Metrics of deep neural networks trained on
Doc2Vec encodings

Activation Size Train
accuracy

Test
accuracy

F1
score

Avg. train time
per epoch (s)

ReLU 2 10 69.81 68.91 69.61 61.17
Tanh 2 10 69.78 68.7 68.76 62.26
PWL Tanh 2 10 69.9 68.96 68.34 62.23
Sigmoid 2 10 70.65 69.08 69.02 61.11
PWL Sigmoid 2 10 70.65 69.17 69.2 61.25
ReLU 5 25 70.3 69.13 69.07 62.4
Tanh 5 25 66.96 67.44 68.18 61.75
PWL Tanh 5 25 68.01 67.91 64.34 62.42
Sigmoid 5 25 70.52 68.86 66.1 62.44
PWL Sigmoid 5 25 50.71 48.83 65.62 62.98
ReLU 5 300 50.1 48.83 65.62 66.15
Tanh 5 300 62.46 60.97 63.23 66.6
PWL Tanh 5 300 58.24 58.36 38.63 70.99
Sigmoid 5 300 49.99 51.17 nan 98.22
PWL Sigmoid 5 300 49.94 51.17 nan 70.3
ReLU 20 25 50.49 48.83 65.62 64.58
Tanh 20 25 49.91 51.17 nan 63.63
PWL Tanh 20 25 50.39 49.0 52.29 66.9
Sigmoid 20 25 50.71 48.83 65.62 63.87
PWL Sigmoid 20 25 50.56 48.83 65.62 68.66
ReLU 20 300 50.51 48.83 65.62 84.78
Tanh 20 300 49.93 51.46 1.64 81.53
PWL Tanh 20 300 49.96 51.17 nan 101.12
Sigmoid 20 300 50.0 51.17 nan 91.42
PWL Sigmoid 20 300 50.03 51.17 nan 109.37

TABLE XIV: Metrics of deep neural networks trained on USE
encodings



Activation Size Train
accuracy

Test
accuracy

F1
score

Avg. train time
per epoch (s)

ReLU 2 10 50.8 51.17 nan 472.38
Tanh 2 10 50.38 51.17 nan 472.03
PWL Tanh 2 10 50.42 51.17 nan 471.73
Sigmoid 2 10 50.43 51.17 nan 474.49
PWL Sigmoid 2 10 50.43 51.17 nan 475.08
ReLU 5 25 50.8 51.17 nan 475.11
Tanh 5 25 50.21 48.83 65.61 475.4
PWL Tanh 5 25 50.05 48.83 65.61 476.02
Sigmoid 5 25 50.65 51.17 nan 479.17
PWL Sigmoid 5 25 50.65 51.17 nan 479.1
ReLU 5 300 50.95 51.17 nan 480.31
Tanh 5 300 50.17 48.83 65.61 484.9
PWL Tanh 5 300 50.0 51.17 nan 490.86
Sigmoid 5 300 50.14 48.83 65.61 486.5
PWL Sigmoid 5 300 50.07 48.83 65.61 489.41
ReLU 20 25 50.66 51.17 nan 477.97
Tanh 20 25 50.14 48.83 65.61 472.7
PWL Tanh 20 25 50.14 48.83 65.61 474.73
Sigmoid 20 25 50.64 51.17 nan 475.97
PWL Sigmoid 20 25 50.64 51.17 nan 482.97
ReLU 20 300 51.15 51.17 nan 505.8
Tanh 20 300 50.01 51.17 nan 503.3
PWL Tanh 20 300 50.18 48.83 65.61 522.08
Sigmoid 20 300 50.12 48.83 65.61 523.74
PWL Sigmoid 20 300 50.08 48.83 65.61 532.09

TABLE XV: Metrics of deep neural networks trained on
InferSent encodings

Activation Size Train
accuracy

Test
accuracy

F1
score

Avg. train time
per epoch (s)

ReLU 2 10 50.66 48.83 65.61 91.56
Tanh 2 10 69.05 68.73 66.25 93.22
PWL Tanh 2 10 69.81 69.12 67.6 91.95
Sigmoid 2 10 70.04 68.96 64.58 91.73
PWL Sigmoid 2 10 70.1 68.83 66.78 91.7
ReLU 5 25 67.6 65.32 70.85 92.19
Tanh 5 25 67.64 61.37 41.67 92.21
PWL Tanh 5 25 66.62 67.09 67.06 92.74
Sigmoid 5 25 69.76 68.8 64.66 92.34
PWL Sigmoid 5 25 50.62 48.83 65.62 93.22
ReLU 5 300 50.53 51.17 0.01 97.2
Tanh 5 300 50.06 51.17 0.0 95.88
PWL Tanh 5 300 50.16 51.17 0.03 101.01
Sigmoid 5 300 50.06 51.17 nan 97.56
PWL Sigmoid 5 300 50.07 51.17 nan 100.88
ReLU 20 25 50.59 48.83 65.62 94.77
Tanh 20 25 49.97 51.17 nan 95.41
PWL Tanh 20 25 49.97 51.17 1.64 98.67
Sigmoid 20 25 50.64 48.83 65.62 95.78
PWL Sigmoid 20 25 50.64 48.83 65.62 98.38
ReLU 20 300 50.54 51.17 nan 124.69
Tanh 20 300 50.02 51.15 0.09 113.96
PWL Tanh 20 300 49.96 51.17 nan 132.4
Sigmoid 20 300 50.0 51.17 nan 131.28
PWL Sigmoid 20 300 50.03 51.17 nan 141.88

TABLE XVI: Metrics of deep neural networks trained on
DistilRoBERTa encodings

Activation Size Train
accuracy

Test
accuracy

F1
score

Avg. train time
per epoch (s)

ReLU 2 10 50.67 51.17 nan 17.3
Tanh 2 10 50.29 48.83 65.62 17.64
PWL Tanh 2 10 50.3 48.83 65.62 17.32
Sigmoid 2 10 50.5 51.17 nan 17.34
PWL Sigmoid 2 10 50.3 48.83 65.62 17.42
ReLU 5 25 50.69 51.17 nan 17.94
Tanh 5 25 50.16 48.83 65.62 17.7
PWL Tanh 5 25 50.16 48.83 65.62 18.71
Sigmoid 5 25 50.68 51.17 nan 18.64
PWL Sigmoid 5 25 50.67 51.17 nan 18.72
ReLU 5 300 50.92 51.19 0.5 22.29
Tanh 5 300 50.05 51.17 nan 21.7
PWL Tanh 5 300 50.11 51.17 nan 25.93
Sigmoid 5 300 49.87 51.17 nan 30.79
PWL Sigmoid 5 300 49.89 51.17 nan 26.02
ReLU 20 25 50.69 51.17 nan 19.48
Tanh 20 25 50.09 48.83 65.62 19.99
PWL Tanh 20 25 50.16 48.83 65.62 23.3
Sigmoid 20 25 50.69 51.17 nan 19.61
PWL Sigmoid 20 25 50.67 51.17 nan 23.28
ReLU 20 300 50.26 48.83 65.62 39.82
Tanh 20 300 49.98 51.17 nan 37.09
PWL Tanh 20 300 49.99 48.83 65.62 56.46
Sigmoid 20 300 49.99 51.17 nan 47.81
PWL Sigmoid 20 300 49.88 51.17 nan 64.54

TABLE XVII: Metrics of deep neural networks trained on
DAAE encodings
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